Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fungal Biol ; 122(2-3): 110-120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29458714

RESUMO

Ash dieback, caused by the fungus Hymenoscyphus fraxineus, has threatened ash trees in Europe for more than two decades. However, little is known of how endophytic communities affect the pathogen, and no effective disease management tools are available. While European ash (Fraxinus excelsior) is severely affected by the disease, other more distantly related ash species do not seem to be affected. We hypothesise that fungal endophytic communities of tolerant ash species can protect the species against ash dieback, and that selected endophytes have potential as biocontrol agents. These hypotheses were tested by isolating members of the fungal communities of five tolerant ash species, and identifying them using ITS regions. Candidate endophytes were tested by an in vitro antagonistic assay with H.fraxineus. From a total of 196 isolates we identified 9 fungal orders, 15 families, and 40 species. Fungi in orders Pleosporales, such as Boeremia exigua and Diaporthe spp., and Hypocreales (e.g., Fusarium sp.), were recovered in most communities, suggesting they are common taxa. The in vitro antagonistic assay revealed five species with high antagonistic activity against H. fraxineus. These endophytes were identified based on ITS region as Sclerostagonospora sp., Setomelanomma holmii, Epicoccum nigrum, B. exigua and Fusarium sp. Three of these taxa have been described previously as antagonists of plant pathogenic microbes, and are of interest for future studies of their potential as biological control agents against ash dieback, especially for valuable ash trees in parks and urban areas.


Assuntos
Ascomicetos/fisiologia , Endófitos/fisiologia , Fraxinus/microbiologia , Microbiota , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Fraxinus/classificação , Doenças das Plantas/prevenção & controle
2.
Nature ; 541(7636): 212-216, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28024298

RESUMO

Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.


Assuntos
Fraxinus/genética , Predisposição Genética para Doença/genética , Variação Genética , Genoma de Planta/genética , Doenças das Plantas/genética , Árvores/genética , Ascomicetos/patogenicidade , Sequência Conservada/genética , Dinamarca , Fraxinus/microbiologia , Genes de Plantas/genética , Genômica , Glicosídeos Iridoides/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Densidade Demográfica , Análise de Sequência de DNA , Especificidade da Espécie , Transcriptoma , Árvores/microbiologia , Reino Unido
3.
Sci Rep ; 6: 19335, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26757823

RESUMO

Tree disease epidemics are a global problem, impacting food security, biodiversity and national economies. The potential for conservation and breeding in trees is hampered by complex genomes and long lifecycles, with most species lacking genomic resources. The European Ash tree Fraxinus excelsior is being devastated by the fungal pathogen Hymenoscyphus fraxineus, which causes ash dieback disease. Taking this system as an example and utilizing Associative Transcriptomics for the first time in a plant pathology study, we discovered gene sequence and gene expression variants across a genetic diversity panel scored for disease symptoms and identified markers strongly associated with canopy damage in infected trees. Using these markers we predicted phenotypes in a test panel of unrelated trees, successfully identifying individuals with a low level of susceptibility to the disease. Co-expression analysis suggested that pre-priming of defence responses may underlie reduced susceptibility to ash dieback.


Assuntos
Adaptação Biológica/genética , Fraxinus/genética , Fraxinus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma , Biomarcadores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Polimorfismo de Nucleotídeo Único
4.
Evol Appl ; 5(3): 219-28, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25568043

RESUMO

An emerging infectious pathogen Hymenoscyphus pseudoalbidus has spread across much of Europe within recent years causing devastating damage on European common ash trees (Fraxinus excelsior) and associated plant communities. The present study demonstrates the presence of additive genetic variation in susceptibility of natural F. excelsior populations to the new invasive disease. We observe high levels of additive variation in the degree of susceptibility with relatively low influence of environmental factors (narrow-sense heritability = 0.37-0.52). Most native trees are found to be highly susceptible, and we estimate that only around 1% has the potential of producing offspring with expected crown damage of <10% under the present disease pressure. The results suggest that the presence of additive genetic diversity in natural F. excelsior populations can confer the species with important ability to recover, but that low resistance within natural European populations is to be expected because of a low frequency of the hypo-sensitive trees. Large effective population sizes will be required to avoid genetic bottlenecks. The role of artificial selection and breeding for protection of the species is discussed based on the findings.

5.
PLoS One ; 5(9): e12586, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20830211

RESUMO

BACKGROUND: Programmed cell death (PCD) is a necessary part of the life of multi-cellular organisms. A type of plant PCD is the defensive hypersensitive response (HR) elicited via recognition of a pathogen by host resistance (R) proteins. The lethal, recessive accelerated cell death 11 (acd11) mutant exhibits HR-like accelerated cell death, and cell death execution in acd11 shares genetic requirements for HR execution triggered by one subclass of R proteins. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes required for this PCD pathway, we conducted a genetic screen for suppressors of acd11, here called lazarus (laz) mutants. In addition to known suppressors of R protein-mediated HR, we isolated 13 novel complementation groups of dominant and recessive laz mutants. Here we describe laz1, which encodes a protein with a domain of unknown function (DUF300), and demonstrate that LAZ1 contributes to HR PCD conditioned by the Toll/interleukin-1 (TIR)-type R protein RPS4 and by the coiled-coil (CC)-type R protein RPM1. Using a yeast-based topology assay, we also provide evidence that LAZ1 is a six transmembrane protein with structural similarities to the human tumor suppressor TMEM34. Finally, we demonstrate by transient expression of reporter fusions in protoplasts that localization of LAZ1 is distributed between the cytosol, the plasma membrane and FM4-64 stained vesicles. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that LAZ1 functions as a regulator or effector of plant PCD associated with the HR, in addition to its role in acd11-related death. Furthermore, the similar topology of a plant and human DUF300 proteins suggests similar functions in PCD across the eukaryotic kingdoms, although a direct role for TMEM34 in cell death control remains to be established. Finally, the subcellular localization pattern of LAZ1 suggests that it may have transport functions for yet unknown, death-related signaling molecules at the plasma membrane and/or endosomal compartments. In summary, our results validate the utility of the large-scale suppressor screen to identify novel components with functions in plant PCD, which may also have implications for deciphering cell death mechanisms in other organisms.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Doenças das Plantas/imunologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Citosol/química , Citosol/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana Transportadoras/genética , Doenças das Plantas/microbiologia , Estrutura Terciária de Proteína , Transporte Proteico , Pseudomonas syringae/imunologia , Pseudomonas syringae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA