Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0010424, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899882

RESUMO

Nitrification by aquarium biofilters transforms ammonia waste (NH3/NH4+) to less toxic nitrate (NO3-) via nitrite (NO2-). Prior to the discovery of complete ammonia-oxidizing ("comammox" or CMX) Nitrospira, previous research revealed that ammonia-oxidizing archaea (AOA) dominated over ammonia-oxidizing bacteria (AOB) in freshwater aquarium biofilters. Here, we profiled aquarium biofilter microbial communities and quantified the abundance of all three known ammonia oxidizers using 16S rRNA gene sequencing and quantitative PCR (qPCR), respectively. Biofilter and water samples were each collected from representative residential and commercial freshwater and saltwater aquaria. Distinct biofilter microbial communities were associated with freshwater and saltwater biofilters. Comammox Nitrospira amoA genes were detected in all 38 freshwater biofilter samples (average CMX amoA genes: 2.2 × 103 ± 1.5 × 103 copies/ng) and dominant in 30, whereas AOA were present in 35 freshwater biofilter samples (average AOA amoA genes: 1.1 × 103 ± 2.7 × 103 copies/ng) and only dominant in 7 of them. The AOB were at relatively low abundance within biofilters (average of 3.2 × 101 ± 1.1 × 102 copies of AOB amoA genes/ng of DNA), except for the aquarium with the highest ammonia concentration. For saltwater biofilters, AOA or AOB were differentially abundant, with no comammox Nitrospira detected. Additional sequencing of Nitrospira amoA genes revealed differential distributions, suggesting niche adaptation based on water chemistry (e.g., ammonia, carbonate hardness, and alkalinity). Network analysis of freshwater microbial communities demonstrated positive correlations between nitrifiers and heterotrophs, suggesting metabolic and ecological interactions within biofilters. These results demonstrate that comammox Nitrospira plays a previously overlooked, but important role in home aquarium biofilter nitrification. IMPORTANCE: Nitrification is a crucial process that converts toxic ammonia waste into less harmful nitrate that occurs in aquarium biofilters. Prior research found that ammonia-oxidizing archaea (AOA) were dominant over ammonia-oxidizing bacteria (AOB) in freshwater aquarium biofilters. Our study profiled microbial communities of aquarium biofilters and quantified the abundance of all currently known groups of aerobic ammonia oxidizers. The findings reveal that complete ammonia-oxidizing (comammox) Nitrospira were present in all freshwater aquarium biofilter samples in high abundance, challenging our previous understanding of aquarium nitrification. We also highlight niche adaptation of ammonia oxidizers based on salinity. The network analysis of freshwater biofilter microbial communities revealed significant positive correlations among nitrifiers and other community members, suggesting intricate interactions within biofilter communities. Overall, this study expands our understanding of nitrification in aquarium biofilters, emphasizes the role of comammox Nitrospira, and highlights the value of aquaria as microcosms for studying nitrifier ecology.

2.
Bioresour Technol ; 368: 128261, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343779

RESUMO

A lab-scale sequencing batch reactor was employed to study simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) when treating municipal wastewater at 10 °C for 158 days. An anaerobic/aerobic configuration that had previously been effective when treating synthetic wastewater was explored, however, these conditions were relatively ineffective for real municipal wastewater. Incorporation of a post-anoxic phase (i.e., anaerobic/aerobic/anoxic) improved nitrogen and phosphorus removals to 91.1 % and 92.4 %, respectively while achieving a simultaneous nitrification and denitrification efficiency of 28.5 %. Activity tests indicated that 15.8 % and 56.0 % of nitrogen were removed by denitrifying phosphorus accumulating organisms in the aerobic phase and heterotrophs using hydrolyzed carbon in the post-anoxic phase, respectively. 16S rRNA gene analysis and stoichiometric ratios indicated the system was rich in phosphorus accumulating organisms (Dechloromonas and Ca. Accumulibacter). Overall, implementation of the post-anoxic phase eliminated carbon uptake for denitrification in the anaerobic phase and was essential to maintaining SNDPR at low temperatures.


Assuntos
Nitrificação , Águas Residuárias , Fósforo/metabolismo , Desnitrificação , Eliminação de Resíduos Líquidos , Temperatura , RNA Ribossômico 16S/genética , Esgotos , Reatores Biológicos , Nitrogênio/metabolismo , Carbono/metabolismo
3.
Bioresour Technol ; 354: 127177, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35439557

RESUMO

Nitrogen removal pathways of simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) at low dissolved oxygen (0.3 mg/L) and temperature (10℃) were explored to understand nitrogen removal mechanisms. Biological nitrogen and phosphorus removal was sustained with total inorganic nitrogen removal, phosphorus removal, and simultaneous nitrification and denitrification (SND) efficiencies of 62.6%, 97.3%, and 31.2%, respectively. The SND was observed in the first 2 h of the aerobic phase and was attributed to denitrifying ordinary heterotrophic organisms using readily biodegradable chemical oxygen demand and denitrifying phosphorus accumulating organisms (DPAOs), which removed 15.1% and 12.2% of influent nitrogen, respectively. A phosphorus accumulating organism (PAO)-rich community was indicated by stoichiometric ratios and supported by 16S rRNA gene analysis, with Dechloromonas, Zoogloea, and Paracoccus as DPAOs, and Ca. Accumulibacter and Tetrasphaera as PAOs. Even though Ca. Competibacter (10.4%) was detected, limited denitrifying glycogen accumulating organism denitrification was observed.


Assuntos
Nitrificação , Fósforo , Reatores Biológicos , Desnitrificação , Nitrogênio/metabolismo , Oxigênio , Fósforo/metabolismo , RNA Ribossômico 16S , Esgotos , Temperatura , Eliminação de Resíduos Líquidos
4.
Water Res X ; 15: 100131, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35402889

RESUMO

Nitrification, the oxidation of ammonia to nitrate via nitrite, is important for many engineered water treatment systems. The sequential steps of this respiratory process are carried out by distinct microbial guilds, including ammonia-oxidizing bacteria (AOB) and archaea (AOA), nitrite-oxidizing bacteria (NOB), and newly discovered members of the genus Nitrospira that conduct complete ammonia oxidation (comammox). Even though all of these nitrifiers have been identified within water treatment systems, their relative contributions to nitrogen cycling are poorly understood. Although AOA contribute to nitrification in many wastewater treatment plants, they are generally outnumbered by AOB. In contrast, AOA and comammox Nitrospira typically dominate relatively low ammonia environments such as drinking water treatment, tertiary wastewater treatment systems, and aquaculture/aquarium filtration. Studies that focus on the abundance of ammonia oxidizers may misconstrue the actual role that distinct nitrifying guilds play in a system. Understanding which ammonia oxidizers are active is useful for further optimization of engineered systems that rely on nitrifiers for ammonia removal. This review highlights known distributions of AOA and comammox Nitrospira in engineered water treatment systems and suggests future research directions that will help assess their contributions to nitrification and identify factors that influence their distributions and activity.

5.
Sci Rep ; 10(1): 9151, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499485

RESUMO

The efficacy of needle-shaped nano-hydroxyapatite (nHA; Ca10(PO4)6(OH)2) as a phosphate (Pi) fertilizer was evaluated as well as its impact on soil and soybean (Glycine max) bacterial and fungal communities. Microbial communities were evaluated in soy fertilized with nHA using ITS (internal transcribed spacer) and 16S rRNA high-throughput gene sequencing. Separate greenhouse growth experiments using agriculturally relevant nHA concentrations and application methods were used to assess plant growth and yield compared with no Pi (-P), soluble Pi (+P), and bulk HA controls. Overall, nHA treatments did not show significantly increased growth, biomass, total plant phosphorus concentrations, or yield compared with no Pi controls. Soil and rhizosphere community structures in controls and nHA treatment groups were similar, with minor shifts in the nHA-containing pots comparable to bulk HA controls at equal concentrations. The implementation of nHA in an agriculturally realistic manner and the resulting poor soy growth advises that contrary to some reports under specialized conditions, this nano-fertilizer may not be a viable alternative to traditional Pi fertilizers. If nano-phosphate fertilizers are to achieve their conjectured agricultural potential, alternative nHAs, with differing morphologies, physicochemical properties, and interactions with the soil matrix could be investigated using the evaluative procedures described.


Assuntos
Durapatita/farmacologia , Glycine max/microbiologia , Microbiota/efeitos dos fármacos , Nanopartículas/química , Bactérias/genética , Bactérias/isolamento & purificação , Biomassa , Durapatita/química , Fertilizantes/análise , Raízes de Plantas/microbiologia , Análise de Componente Principal , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rizosfera , Microbiologia do Solo , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA