Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Sci ; 177(1): 140-155, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32525552

RESUMO

In vitro bronchial epithelial monoculture models have been pivotal in defining the adverse effects of inhaled toxicant exposures; however, they are only representative of one cellular compartment and may not accurately reflect the effects of exposures on other cell types. Lung fibroblasts exist immediately beneath the bronchial epithelial barrier and play a central role in lung structure and function, as well as disease development and progression. We tested the hypothesis that in vitro exposure of a human bronchial epithelial cell barrier to the model oxidant diesel exhaust particulates caused transepithelial oxidative stress in the underlying lung fibroblasts using a human bronchial epithelial cell and lung fibroblast coculture model. We observed that diesel exhaust particulates caused transepithelial oxidative stress in underlying lung fibroblasts as indicated by intracellular accumulation of the reactive oxygen species hydrogen peroxide, oxidation of the cellular antioxidant glutathione, activation of NRF2, and induction of oxidative stress-responsive genes. Further, targeted antioxidant treatment of lung fibroblasts partially mitigated the oxidative stress response gene expression in adjacent human bronchial epithelial cells during diesel exhaust particulate exposure. This indicates that exposure-induced oxidative stress in the airway extends beyond the bronchial epithelial barrier and that lung fibroblasts are both a target and a mediator of the adverse effects of inhaled chemical exposures despite being separated from the inhaled material by an epithelial barrier. These findings illustrate the value of coculture models and suggest that transepithelial exposure effects should be considered in inhalation toxicology research and testing.


Assuntos
Pulmão , Emissões de Veículos , Brônquios , Células Epiteliais , Fibroblastos , Humanos , Estresse Oxidativo , Emissões de Veículos/toxicidade
2.
J Appl Toxicol ; 40(2): 245-256, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31486105

RESUMO

During the Deepwater Horizon oil spill, vast quantities of a chemical dispersant Corexit 9500 were applied in remediation efforts. In addition to the acute toxicity, it is essential to evaluate Corexit further with a broader scope of long-term sublethal endocrine endpoints. The American alligator (Alligator mississippiensis) is an excellent organism for such an endeavor. It exhibits temperature-dependent sex determination, in which egg incubation temperatures during a thermosensitive period (TSP) in embryonic development determine the sex of embryos. Estrogen signals play a critical role in this process. For example, a single exposure to exogenous estrogen during the TSP overrides the effects of temperature and leads to skewed sex ratios. At a concentration of 100 ppm, Corexit significantly induced transcriptional activity of both alligator nuclear estrogen receptors 1 and 2 in vitro in reporter gene assays. To investigate the estrogenic effects of Corexit on gonadal development, alligator eggs were exposed to Corexit at environmentally relevant concentrations (0.25, 2.5 and 25 ppm) before the TSP in ovo. Exposure to Corexit at 0.25 and 25 ppm significantly delayed hatching and growth. Corexit exposure at any treatment level did not affect sex ratios or testicular mRNA abundance as measured at 1-week post-hatching, suggesting that the combination of Corexit components did not synergize enough to induce ovarian development in ovo. These results point to a need for further investigations on individual and combined components of Corexit to understand better their long-term effects on the development and reproductive health of alligators and other coastal aquatic wildlife.


Assuntos
Jacarés e Crocodilos/crescimento & desenvolvimento , Desenvolvimento Embrionário/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Recuperação e Remediação Ambiental/métodos , Estrogênios , Poluição por Petróleo , Poluentes Químicos da Água/toxicidade , Animais , Exposição Ambiental , Florida , Razão de Masculinidade
3.
Gen Comp Endocrinol ; 265: 46-55, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29208362

RESUMO

Deepwater Horizon spilled over 200 million gallons of oil into the waters of the Gulf of Mexico in 2010. In an effort to contain the spill, chemical dispersants were applied to minimize the amount of oil reaching coastal shorelines. However, the biological impacts of chemically-dispersed oil are not well characterized, and there is a particular lack of knowledge concerning sublethal long-term effects of exposure. This study examined potential estrogenic effects of CWAF, Corexit 9500-enhanced water-accommodated fraction of oil, by examining its effect on estrogen receptors and sex determination in the American alligator, Alligator mississippiensis. The alligator exhibits temperature-dependent sex determination which is modulated by estrogen signals, and exposure to 17ß-estradiol (E2) and estrogenic compounds in ovo during the thermosensitive period of embryonic development can induce ovarian development at a male-producing temperature (MPT). CWAF induced transactivation up to 50% of the maximum induction by E2 via alligator estrogen receptors in vitro. To determine potential endocrine-disrupting effects of exposure directly on the gonad, gonad-adrenal-mesonephric (GAM) organ complexes were isolated from embryos one day prior to the thermosensitive period and exposed to E2, CWAF, or medium alone in vitro for 8-16 days at MPT. Both CWAF and E2 exposure induced a significant increase in female ratios. CWAF exposure suppressed GAM mRNA abundances of anti-Müllerian hormone (AMH), sex determining region Y-box 9, and aromatase, whereas E2 exposure suppressed AMH and increased Forkhead box protein L2 mRNA abundances in GAM. These results indicate that the observed endocrine-disrupting effects of CWAF are not solely estrogenically mediated, and further investigations are required.


Assuntos
Jacarés e Crocodilos/metabolismo , Exposição Ambiental , Feminização/metabolismo , Lipídeos/toxicidade , Petróleo/toxicidade , Processos de Determinação Sexual/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Estrogênios/toxicidade , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Processos de Determinação Sexual/genética , Razão de Masculinidade , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
4.
J Appl Toxicol ; 37(2): 201-206, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27225887

RESUMO

In 2010, approximately 2.1 million gallons of chemical dispersants, mainly Corexit 9500, were applied in the Gulf of Mexico to prevent the oil slick from reaching shorelines and to accelerate biodegradation of oil during the Deepwater Horizon oil spill. Recent studies have revealed toxic effects of Corexit 9500 on marine microzooplankton that play important roles in food chains in marine ecosystems. However, there is still little known about the toxic effects of Corexit 9500 on freshwater zooplankton, even though oil spills do occur in freshwater and chemical dispersants may be used in response to these spills. The cladoceran crustacean, water flea Daphnia magna, is a well-established model species for various toxicological tests, including detection of juvenile hormone-like activity in test compounds. In this study, we conducted laboratory experiments to investigate the acute and chronic toxicity of Corexit 9500 using D. magna. The acute toxicity test was conducted according to OECD TG202 and the 48 h EC50 was 1.31 ppm (CIs 0.99-1.64 ppm). The reproductive chronic toxicity test was performed following OECD TG211 ANNEX 7 and 21 days LOEC and NOEC values were 4.0 and 2.0 ppm, respectively. These results indicate that Corexit 9500 has toxic effects on daphnids, particularly during the neonatal developmental stage, which is consistent with marine zooplankton results, whereas juvenile hormone-like activity was not identified. Therefore, our findings of the adverse effects of Corexit 9500 on daphnids suggest that application of this type of chemical dispersant may have catastrophic impacts on freshwater ecosystems by disrupting the key food chain network. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Daphnia/efeitos dos fármacos , Lipídeos/toxicidade , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/fisiologia , Ecossistema , Água Doce/química , Dose Letal Mediana , Reprodução/efeitos dos fármacos , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
5.
Gen Comp Endocrinol ; 238: 23-31, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27013381

RESUMO

Dr. Louis J. Guillette Jr. thought of himself as a reproductive biologist. However, his interest in reproductive biology transcended organ systems, life history stages, species, and environmental contexts. His integrative and collaborative nature led to diverse and fascinating research projects conducted all over the world. He doesn't leave us with a single legacy. Instead, he entrusts us with several. The purpose of this review is to highlight those legacies, in both breadth and diversity, and to illustrate Dr. Guillette's grand contributions to the field of reproductive biology. He has challenged the field to reconsider how we think about our data, championed development of novel and innovative techniques to measure endocrine function, helped define the field of endocrine disruption, and lead projects to characterize new endocrine disrupting chemicals. He significantly influenced our understanding of evolution, and took bold and important steps to translate all that he has learned into advances in human reproductive health. We hope that after reading this manuscript our audience will appreciate and continue Dr. Guillette's practice of open-minded and passionate collaboration to understand the basic mechanisms driving reproductive physiology and to ultimately apply those findings to protect and improve wildlife and human health.


Assuntos
Jacarés e Crocodilos/metabolismo , Reprodução/fisiologia , Xenobióticos/metabolismo , Animais , Evolução Biológica , Disruptores Endócrinos/toxicidade , Reprodução/efeitos dos fármacos , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA