Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 11(6): 536-43, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22504534

RESUMO

Molecular orientation critically influences the mechanical, chemical, optical and electronic properties of organic materials. So far, molecular-scale ordering in soft matter could be characterized with X-ray or electron microscopy techniques only if the sample exhibited sufficient crystallinity. Here, we show that the resonant scattering of polarized soft X-rays (P-SoXS) by molecular orbitals is not limited by crystallinity and that it can be used to probe molecular orientation down to size scales of 10 nm. We first apply the technique on highly crystalline small-molecule thin films and subsequently use its high sensitivity to probe the impact of liquid-crystalline ordering on charge mobility in polymeric transistors. P-SoXS also reveals scattering anisotropy in amorphous domains of all-polymer organic solar cells where interfacial interactions pattern orientational alignment in the matrix phase, which probably plays an important role in the photophysics. The energy and q-dependence of the scattering anisotropy allows the identification of the composition and the degree of orientational order in the domains.

2.
Nano Lett ; 8(5): 1393-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18363343

RESUMO

We develop a simple model that can explain the current-voltage ( J- V) curves of excitonic photovoltaic solar cells, spanning polymer:polymer, polymer:fullerene, and polymer:nanocrystal devices. We show that by subtracting out the dark current, we can explain apparent intensity-dependent characteristics and thus identify geminate recombination as the dominant loss mechanism and establish its electric field dependence. We present an analytic fit to the J- V curves of all measured devices based on a single fitted parameter, the electric field required to split 50% of geminate charge pairs, which we term the critical field. Devices of different material combinations and morphologies can all be described by this method and yield critical fields varying between >1 x 10(8) V/m for blends of poly(9,9'-dioctylfluorene- co-bis- N, N'-(4-butylphenyl)-bis- N, N'-phenyl-1,4-phenylenediamine) (PFB) and poly(9,9'-dioctylfluorene- co-benzothiadiazole) (F8BT) and 8 x 10 (5) V/m for slow-grown blends of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). A comparison with material properties reveals that the primary route to improved photovoltaic materials is enhanced charge delocalization.


Assuntos
Fontes de Energia Elétrica , Eletroquímica/instrumentação , Fulerenos/química , Modelos Teóricos , Fotoquímica/instrumentação , Simulação por Computador , Condutividade Elétrica , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Fulerenos/efeitos da radiação , Luz , Fotoquímica/métodos , Polímeros/química , Polímeros/efeitos da radiação , Doses de Radiação
3.
Nanotechnology ; 19(42): 424015, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21832675

RESUMO

We investigate the influence of annealing on the morphology of intimately mixed blends of the conjugated polymers poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylene-diamine) (PFB) and poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) with scanning transmission x-ray microscopy (STXM). Through the use of a zone plate with theoretical Rayleigh resolution of 30 nm, we are able to resolve sub-100 nm bulk structure in these films. Surprisingly, for unannealed films spin-coated from chloroform we observe features with an average diameter of 85 nm. The high degree of photoluminescence quenching in these as-spun films (>95%) implies that there is significant intermixing within the 85 nm structures, indicating that a hierarchy of phase separation exists even on the length scale of less than 100 nm. With annealing up to 160 °C, close to the T(g) of the components, there is little change in the feature sizes observed by STXM, although an increase in variation of the composition is observed. With annealing above 160 °C the imaged features begin to evolve in size, increasing to 225 nm in extent, alongside large changes in composition with annealing to 200 °C. Comparing the evolution of morphology imaged by STXM with the change in photoluminescence quenching with annealing, we propose that phase separation first evolves via the evolution of relatively pure phases on the length scale of a few to tens of nanometres within the larger 85 nm structures. Once the length scale of compositional fluctuations exceeds 85 nm (for anneal temperatures above 160 °C) the hierarchy of phase separation is lost and the subsequent morphological evolution is readily imaged by STXM. Applying the results of an exciton diffusion and quenching model, we find good agreement between the size of the domains measured by STXM (above 180 °C) and the results of the model for an exciton diffusion length of 15 nm. The growth in domain size and towards purer structures has also been observed with resonant soft x-ray scattering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA