Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
mSphere ; 6(5): e0069821, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34668756

RESUMO

Horizontal gene transfer (HGT) is a driving force of microbial evolution. The gut of animals acts as a potent reservoir for the lateral transfer of virulence, fitness, and antimicrobial resistance genes through plasmids. Reduced-complexity models for the examination of host-microbe interactions involved in plasmid transfer are greatly desired. Thus, this study identifies the use of Drosophila melanogaster as a model organism for the conjugation of plasmids of various incompatibility groups in the gut. Enterobacteriaceae conjugation pairs were identified in vitro and used for oral inoculation of the Drosophila gut. Flies were enumerated for the donor, recipient, and transconjugant populations. Each donor-recipient pair was observed to persist in fly guts for the duration of the experiment. Gut concentrations of the donors and recipients were significantly different between male and female flies, with females generally demonstrating increased concentrations. Furthermore, host genetics significantly altered the concentrations of donors and recipients. However, transconjugant concentrations were not affected by host sex or genetics and were detected only in the IncPε and IncI1 plasmid groups. This study demonstrates Drosophila melanogaster as a model for gut-mediated plasmid transfer. IMPORTANCE Microbial evolution in the gut of animals due to horizontal gene transfer (HGT) is of significant interest for microbial evolution as well as within the context of human and animal health. Microbial populations evolve within the host, and factors from the bacteria and host interact to regulate this evolution. However, little is currently known about how host and bacterial factors regulate plasmid-mediated HGT in the gut. This study demonstrates the use of Drosophila and the roles of sexual dimorphism as well as plasmid incompatibility groups in HGT in the gut.


Assuntos
Drosophila melanogaster/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Feminino , Especificidade de Hospedeiro , Masculino , Caracteres Sexuais , Virulência
2.
PLoS One ; 16(8): e0255085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34379632

RESUMO

Aging is universal, yet characterizing the molecular changes that occur in aging which lead to an increased risk for neurological disease remains a challenging problem. Aging affects the prefrontal cortex (PFC), which governs executive function, learning, and memory. Previous sequencing studies have demonstrated that aging alters gene expression in the PFC, however the extent to which these changes are conserved across species and are meaningful in neurodegeneration is unknown. Identifying conserved, age-related genetic and morphological changes in the brain allows application of the wealth of tools available to study underlying mechanisms in model organisms such as Drosophila melanogaster. RNA sequencing data from human PFC and fly heads were analyzed to determine conserved transcriptome signatures of age. Our analysis revealed that expression of 50 conserved genes can accurately determine age in Drosophila (R2 = 0.85) and humans (R2 = 0.46). These transcriptome signatures were also able to classify Drosophila into three age groups with a mean accuracy of 88% and classify human samples with a mean accuracy of 69%. Overall, this work identifies 50 highly conserved aging-associated genetic changes in the brain that can be further studied in model organisms and demonstrates a novel approach to uncovering genetic changes conserved across species from multi-study public databases.


Assuntos
Envelhecimento/genética , Encéfalo/metabolismo , Sequência Conservada/genética , Drosophila melanogaster/genética , Aprendizado de Máquina , National Institutes of Health (U.S.) , Transcriptoma/genética , Adulto , Idoso , Algoritmos , Animais , Bases de Dados Genéticas , Regulação da Expressão Gênica , Genoma de Inseto , Humanos , Pessoa de Meia-Idade , Transdução de Sinais/genética , Estados Unidos
3.
Front Nutr ; 8: 652192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041258

RESUMO

Eggs are protein-rich, nutrient-dense, and contain bioactive ingredients that have been shown to modify gene expression and impact health. To understand the effects of egg consumption on tissue-specific mRNA and microRNA expression, we examined the role of whole egg consumption (20% protein, w/w) on differentially expressed genes (DEGs) between rat (n = 12) transcriptomes in the prefrontal cortex (PFC), liver, kidney, and visceral adipose tissue (VAT). Principal component analysis with hierarchical clustering was used to examine transcriptome profiles between dietary treatment groups. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis as well as genetic network and disease enrichment analysis to examine which metabolic pathways were the most predominantly altered in each tissue. Overall, our data demonstrates that whole egg consumption for 2 weeks modified the expression of 52 genes in the PFC, 22 genes in VAT, and two genes in the liver (adj p < 0.05). Additionally, 16 miRNAs were found to be differentially regulated in the PFC, VAT, and liver, but none survived multiple testing correction. The main pathways influenced by WE consumption were glutathione metabolism in VAT and cholesterol biosynthesis in the PFC. These data highlight key pathways that may be involved in diseases and are impacted by acute consumption of a diet containing whole eggs.

4.
PLoS One ; 15(11): e0240885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33141822

RESUMO

Nutrigenomic evidence supports the idea that Type 2 Diabetes Mellitus (T2DM) arises due to the interactions between the transcriptome, individual genetic profiles, lifestyle, and diet. Since eggs are a nutrient dense food containing bioactive ingredients that modify gene expression, our goal was to examine the role of whole egg consumption on the transcriptome during T2DM. We analyzed whether whole egg consumption in Zucker Diabetic Fatty (ZDF) rats alters microRNA and mRNA expression across the adipose, liver, kidney, and prefrontal cortex tissue. Male ZDF (fa/fa) rats (n = 12) and their lean controls (fa/+) (n = 12) were obtained at 6 wk of age. Rats had ad libitum access to water and were randomly assigned to a modified semi-purified AIN93G casein-based diet or a whole egg-based diet, both providing 20% protein (w/w). TotalRNA libraries were prepared using QuantSeq 3' mRNA-Seq and Lexogen smallRNA library prep kits and were further sequenced on an Illumina HighSeq3000. Differential gene expression was conducted using DESeq2 in R and Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%. We identified 9 microRNAs and 583 genes that were differentially expressed in response to 8 wk of consuming whole egg-based diets. Kyto Encyclopedia of Genes and Genomes/Gene ontology pathway analyses demonstrated that 12 genes in the glutathione metabolism pathway were upregulated in the liver and kidney of ZDF rats fed whole egg. Whole egg consumption primarily altered glutathione pathways such as conjugation, methylation, glucuronidation, and detoxification of reactive oxygen species. These pathways are often negatively affected during T2DM, therefore this data provides unique insight into the nutrigenomic response of dietary whole egg consumption during the progression of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Ovos , Glutationa/metabolismo , Nutrigenômica , Animais , Diabetes Mellitus Tipo 2/dietoterapia , Ovos/efeitos adversos , Perfilação da Expressão Gênica , Masculino , Redes e Vias Metabólicas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Ratos Zucker , Distribuição Tecidual , Regulação para Cima
5.
Annu Rev Nutr ; 40: 77-104, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966184

RESUMO

Small RNAs (sRNAs), including microRNAs (miRNAs), are noncoding RNA (ncRNA) molecules involved in gene regulation. sRNAs play important roles in development; however, their significance in nutritional control and as metabolic modulators is still emerging. The mechanisms by which diet impacts metabolic genes through miRNAs remain an important area of inquiry. Recent work has established how miRNAs are transported in body fluids often within exosomes, which are small cell-derived vesicles that function in intercellular communication. The abundance of other recently identified ncRNAs and new insights regarding ncRNAs as dietary bioactive compounds could remodel our understanding about how foods impact gene expression. Although controversial, some groups have shown that dietary RNAs from plants and animals (i.e., milk) are functional in consumers. In the future, regulating sRNAs either directly through dietary delivery or indirectly by altered expression of endogenous sRNA may be part of nutritional interventions for regulating metabolism.


Assuntos
Dieta , Regulação da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Estado Nutricional , Animais , Microbioma Gastrointestinal , Humanos , MicroRNAs/genética
6.
Neural Dev ; 15(1): 4, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183907

RESUMO

BACKGROUND: Recent studies of synapse form and function highlight the importance of the actin cytoskeleton in regulating multiple aspects of morphogenesis, neurotransmission, and neural plasticity. The conserved actin-associated protein Enabled (Ena) is known to regulate development of the Drosophila larval neuromuscular junction through a postsynaptic mechanism. However, the functions and regulation of Ena within the presynaptic terminal has not been determined. METHODS: Here, we use a conditional genetic approach to address a presynaptic role for Ena on presynaptic morphology and ultrastructure, and also examine the pathway in which Ena functions through epistasis experiments. RESULTS: We find that Ena is required to promote the morphogenesis of presynaptic boutons and branches, in contrast to its inhibitory role in muscle. Moreover, while postsynaptic Ena is regulated by microRNA-mediated mechanisms, presynaptic Ena relays the output of the highly conserved receptor protein tyrosine phosphatase Dlar and associated proteins including the heparan sulfate proteoglycan Syndecan, and the non-receptor Abelson tyrosine kinase to regulate addition of presynaptic varicosities. Interestingly, Ena also influences active zones, where it restricts active zone size, regulates the recruitment of synaptic vesicles, and controls the amplitude and frequency of spontaneous glutamate release. CONCLUSION: We thus show that Ena, under control of the Dlar pathway, is required for presynaptic terminal morphogenesis and bouton addition and that Ena has active zone and neurotransmission phenotypes. Notably, in contrast to Dlar, Ena appears to integrate multiple pathways that regulate synapse form and function.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/metabolismo , Epistasia Genética/fisiologia , Morfogênese/fisiologia , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Drosophila , Epistasia Genética/genética , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Transdução de Sinais/genética , Sinapses/ultraestrutura
7.
Nat Commun ; 11(1): 1092, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107390

RESUMO

Micro(mi)RNA-based post-transcriptional regulatory mechanisms have been broadly implicated in the assembly and modulation of synaptic connections required to shape neural circuits, however, relatively few specific miRNAs have been identified that control synapse formation. Using a conditional transgenic toolkit for competitive inhibition of miRNA function in Drosophila, we performed an unbiased screen for novel regulators of synapse morphogenesis at the larval neuromuscular junction (NMJ). From a set of ten new validated regulators of NMJ growth, we discovered that miR-34 mutants display synaptic phenotypes and cell type-specific functions suggesting distinct downstream mechanisms in the presynaptic and postsynaptic compartments. A search for conserved downstream targets for miR-34 identified the junctional receptor CNTNAP4/Neurexin-IV (Nrx-IV) and the membrane cytoskeletal effector Adducin/Hu-li tai shao (Hts) as proteins whose synaptic expression is restricted by miR-34. Manipulation of miR-34, Nrx-IV or Hts-M function in motor neurons or muscle supports a model where presynaptic miR-34 inhibits Nrx-IV to influence active zone formation, whereas, postsynaptic miR-34 inhibits Hts to regulate the initiation of bouton formation from presynaptic terminals.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Terminações Pré-Sinápticas/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a Calmodulina/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Larva/crescimento & desenvolvimento , Morfogênese/genética , Mutação , Junção Neuromuscular/citologia , Junção Neuromuscular/crescimento & desenvolvimento
8.
Nat Commun ; 6: 7279, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081261

RESUMO

Although the impact of microRNAs (miRNAs) in development and disease is well established, understanding the function of individual miRNAs remains challenging. Development of competitive inhibitor molecules such as miRNA sponges has allowed the community to address individual miRNA function in vivo. However, the application of these loss-of-function strategies has been limited. Here we offer a comprehensive library of 141 conditional miRNA sponges targeting well-conserved miRNAs in Drosophila. Ubiquitous miRNA sponge delivery and consequent systemic miRNA inhibition uncovers a relatively small number of miRNA families underlying viability and gross morphogenesis, with false discovery rates in the 4-8% range. In contrast, tissue-specific silencing of muscle-enriched miRNAs reveals a surprisingly large number of novel miRNA contributions to the maintenance of adult indirect flight muscle structure and function. A strong correlation between miRNA abundance and physiological relevance is not observed, underscoring the importance of unbiased screens when assessing the contributions of miRNAs to complex biological processes.


Assuntos
Drosophila/genética , MicroRNAs/antagonistas & inibidores , Animais , Animais Geneticamente Modificados , Drosophila/metabolismo , Feminino , Biblioteca Gênica , Masculino , MicroRNAs/metabolismo , Músculos/metabolismo
9.
Elife ; 42015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25997101

RESUMO

The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Animais , Linhagem Celular , Respiração Celular/fisiologia , Drosophila , Células HEK293 , Humanos , Mitocôndrias/fisiologia , Células Musculares/metabolismo , Neurônios/metabolismo , Ligação Proteica/fisiologia , Proteômica/métodos
10.
Development ; 141(9): 1864-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24718988

RESUMO

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play important roles in nervous system development and physiology. However, our understanding of the strategies by which miRNAs control synapse development is limited. We find that the highly conserved miRNA miR-8 regulates the morphology of presynaptic arbors at the Drosophila neuromuscular junction (NMJ) through a postsynaptic mechanism. Developmental analysis shows that miR-8 is required for presynaptic expansion that occurs in response to larval growth of the postsynaptic muscle targets. With an in vivo sensor, we confirm our hypothesis that the founding member of the conserved Ena/VASP (Enabled/Vasodilator Activated Protein) family is regulated by miR-8 through a conserved site in the Ena 3' untranslated region (UTR). Synaptic marker analysis and localization studies suggest that Ena functions within the subsynaptic reticulum (SSR) surrounding presynaptic terminals. Transgenic lines that express forms of a conserved mammalian Ena ortholog further suggest that this localization and function of postsynaptic Ena/VASP family protein is dependent on conserved C-terminal domains known to mediate actin binding and assembly while antagonizing actin-capping proteins. Ultrastructural analysis demonstrates that miR-8 is required for SSR morphogenesis. As predicted by our model, we find that Ena is both sufficient and necessary to account for miR-8-mediated regulation of SSR architecture, consistent with its localization in this compartment. Finally, electrophysiological analysis shows that miR-8 is important for spontaneous neurotransmitter release frequency and quantal content. However, unlike the structural phenotypes, increased expression of Ena fails to mimic the functional defects observed in miR-8-null animals. Together, these findings suggest that miR-8 limits the expansion of presynaptic terminals during larval synapse development through regulation of postsynaptic actin assembly that is independent of changes in synapse physiology.


Assuntos
Actinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/metabolismo , Sinapses/metabolismo , Proteínas de Capeamento de Actina/metabolismo , Animais , Proteínas de Ligação a DNA/química , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Regulação da Expressão Gênica , Larva/metabolismo , MicroRNAs/genética , Morfogênese , Mutação/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Polimerização , Estrutura Terciária de Proteína , Transporte Proteico , Sinapses/ultraestrutura , Transmissão Sináptica
11.
Dev Biol ; 353(2): 331-43, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21419114

RESUMO

Development of the cerebellum involves a coordinated program of neuronal process outgrowth and migration resulting in a foliated structure that plays a key role in motor function. Neuron navigator 2 (Nav2) is a cytoskeletal-interacting protein that functions in neurite outgrowth and axonal elongation. Herein we show that hypomorphic mutant mice lacking the full-length Nav2 transcript exhibit ataxia and defects in cerebellar development. At embryonic day (E)17.5, the mutant cerebellum is reduced in size and exhibits defects in vermal foliation. Reduction in cell proliferation at early times (E12.5 and E14.5) may contribute to this size reduction. The full-length Nav2 transcript is expressed in the premigratory zone of the external granule layer (EGL). Granule cells in the germinal zone of the EGL appear to proliferate normally, however, due to the reduction in cerebellar circumference there are fewer total BrdU-labeled granule cells in the mutants, and these fail to migrate normally toward the interior of the cerebellum. In Nav2 hypomorphs, fewer granule cells migrate out of cerebellar EGL explants and neurite outgrowth from both explants and isolated external granule cell cultures is reduced. This suggests that the formation of parallel axon fibers and neuronal migration is disrupted in Nav2 mutants. This work supports an essential role for full-length Nav2 in cerebellar development, including axonal elongation and migration of the EGL neurons.


Assuntos
Ataxia/embriologia , Cerebelo/anormalidades , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Animais , Ataxia/genética , Ataxia/fisiopatologia , Axônios/metabolismo , Axônios/ultraestrutura , Sequência de Bases , Movimento Celular , Proliferação de Células , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Primers do DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/fisiologia , Neurogênese , Equilíbrio Postural/genética , Equilíbrio Postural/fisiologia , Gravidez , Células de Purkinje/citologia , Células de Purkinje/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Neural Dev ; 5: 6, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20184720

RESUMO

BACKGROUND: All-trans retinoic acid (atRA) is required for nervous system development, including the developing hindbrain region. Neuron navigator 2 (Nav2) was first identified as an atRA-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, Rainb1), and is required for atRA-mediated neurite outgrowth. In this paper, we explore the importance of Nav2 in nervous system development and function in vivo. RESULTS: Nav2 hypomorphic homozygous mutants show decreased survival starting at birth. Nav2 mutant embryos show an overall reduction in nerve fiber density, as well as specific defects in cranial nerves IX (glossopharyngeal) and X (vagus). Nav2 hypomorphic mutant adult mice also display a blunted baroreceptor response compared to wild-type controls. CONCLUSIONS: Nav2 functions in mammalian nervous system development, and is required for normal cranial nerve development and blood pressure regulation in the adult.


Assuntos
Pressão Sanguínea/fisiologia , Nervos Cranianos/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Proteínas do Tecido Nervoso/metabolismo , Pressorreceptores/metabolismo , Animais , Pressão Sanguínea/genética , Nervos Cranianos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Nervo Glossofaríngeo/crescimento & desenvolvimento , Nervo Glossofaríngeo/metabolismo , Homozigoto , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/fisiologia , Pressorreceptores/crescimento & desenvolvimento , Rombencéfalo/crescimento & desenvolvimento , Rombencéfalo/metabolismo , Nervo Vago/crescimento & desenvolvimento , Nervo Vago/metabolismo
13.
J Neurobiol ; 66(7): 739-56, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16688769

RESUMO

The vitamin A metabolite, all-trans retinoic acid (atRA) plays essential roles in nervous system development, including neuronal patterning, survival, and neurite outgrowth. Our understanding of how the vitamin A acid functions in neurite outgrowth comes largely from cultured embryonic neurons and model neuronal cell systems including human neuroblastoma cells. Specifically, atRA has been shown to increase neurite outgrowth from embryonic DRG, sympathetic, spinal cord, and olfactory receptor neurons, as well as dissociated cerebra and retina explants. A role for atRA in axonal elongation is also supported by a limited number of studies in vivo, in which a deficiency in retinoid signaling produced either by dietary or genetic means has been shown to alter neurite outgrowth from the spinal cord and hindbrain regions. Human neuroblastoma cells also show enhanced numbers of neurites and longer processes in response to atRA. The mechanism whereby retinoids regulate neurite outgrowth includes, but is not limited to, the regulation of the transcription of neurotrophin receptors. More recent evidence supports a role for atRA in regulating components of other signaling pathways or candidate neurite-regulating factors. Some of these effects, such as that on neuron navigator 2 (NAV2), may be direct, whereas others may be secondary to other atRA-induced changes in the cell. This review focuses on what is currently known about neurite initiation and growth, with emphasis on the manner in which atRA may influence these events.


Assuntos
Axônios/metabolismo , Sistema Nervoso/embriologia , Neuritos/metabolismo , Tretinoína/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA