Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleic Acids Res ; 45(16): 9611-9624, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934496

RESUMO

Although bacterial gyrase and topoisomerase IV have critical interactions with positively supercoiled DNA, little is known about the actions of these enzymes on overwound substrates. Therefore, the abilities of Bacillus anthracis and Escherichia coli gyrase and topoisomerase IV to relax and cleave positively supercoiled DNA were analyzed. Gyrase removed positive supercoils ∼10-fold more rapidly and more processively than it introduced negative supercoils into relaxed DNA. In time-resolved single-molecule measurements, gyrase relaxed overwound DNA with burst rates of ∼100 supercoils per second (average burst size was 6.2 supercoils). Efficient positive supercoil removal required the GyrA-box, which is necessary for DNA wrapping. Topoisomerase IV also was able to distinguish DNA geometry during strand passage and relaxed positively supercoiled substrates ∼3-fold faster than negatively supercoiled molecules. Gyrase maintained lower levels of cleavage complexes with positively supercoiled (compared with negatively supercoiled) DNA, whereas topoisomerase IV generated similar levels with both substrates. Results indicate that gyrase is better suited than topoisomerase IV to safely remove positive supercoils that accumulate ahead of replication forks. They also suggest that the wrapping mechanism of gyrase may have evolved to promote rapid removal of positive supercoils, rather than induction of negative supercoils.


Assuntos
DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Bacillus anthracis/enzimologia , DNA Girase/química , DNA Topoisomerase IV/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo
2.
Biochemistry ; 56(32): 4191-4200, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708938

RESUMO

Gyrase appears to be the primary cellular target for quinolone antibacterials in multiple pathogenic bacteria, including Bacillus anthracis, the causative agent of anthrax. Given the significance of this type II topoisomerase as a drug target, it is critical to understand how quinolones interact with gyrase and how specific mutations lead to resistance. However, these important issues have yet to be addressed for a canonical gyrase. Therefore, we utilized a mechanistic approach to characterize interactions of quinolones with wild-type B. anthracis gyrase and enzymes containing the most common quinolone resistance mutations. Results indicate that clinically relevant quinolones interact with the enzyme through a water-metal ion bridge in which a noncatalytic divalent metal ion is chelated by the C3/C4 keto acid of the drug. In contrast to other bacterial type II topoisomerases that have been examined, the bridge is anchored to gyrase primarily through a single residue (Ser85). Substitution of groups at the quinolone C7 and C8 positions generated drugs that were less dependent on the water-metal ion bridge and overcame resistance. Thus, by analyzing the interactions of drugs with type II topoisomerases from individual bacteria, it may be possible to identify specific quinolone derivatives that can overcome target-mediated resistance in important pathogenic species.


Assuntos
Bacillus anthracis/enzimologia , Proteínas de Bactérias/química , DNA Topoisomerases Tipo II/química , Farmacorresistência Bacteriana , Quinolonas/química , Inibidores da Topoisomerase II/química , Bacillus anthracis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo
3.
Biochemistry ; 54(5): 1278-86, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25586498

RESUMO

CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase IIα was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. On the basis of the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase IIα in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential.


Assuntos
Bacillus anthracis/enzimologia , Proteínas de Bactérias/química , DNA Topoisomerases Tipo II/química , Fluoroquinolonas/química , Inibidores da Topoisomerase II/química , Bacillus anthracis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Humanos , Mutação , Inibidores da Topoisomerase II/farmacologia
4.
Antimicrob Agents Chemother ; 58(12): 7182-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25246407

RESUMO

The rise in quinolone resistance is threatening the clinical use of this important class of broad-spectrum antibacterials. Quinolones kill bacteria by increasing the level of DNA strand breaks generated by the type II topoisomerases gyrase and topoisomerase IV. Most commonly, resistance is caused by mutations in the serine and acidic amino acid residues that anchor a water-metal ion bridge that facilitates quinolone-enzyme interactions. Although other mutations in gyrase and topoisomerase IV have been reported in quinolone-resistant strains, little is known regarding their contributions to cellular quinolone resistance. To address this issue, we characterized the effects of the V96A mutation in the A subunit of Bacillus anthracis topoisomerase IV on quinolone activity. The results indicate that this mutation causes an ∼ 3-fold decrease in quinolone potency and reduces the stability of covalent topoisomerase IV-cleaved DNA complexes. However, based on metal ion usage, the V96A mutation does not disrupt the function of the water-metal ion bridge. A similar level of resistance to quinazolinediones (which do not use the bridge) was seen. V96A is the first topoisomerase IV mutation distal to the water-metal ion bridge demonstrated to decrease quinolone activity. It also represents the first A subunit mutation reported to cause resistance to quinazolinediones. This cross-resistance suggests that the V96A change has a global effect on the structure of the drug-binding pocket of topoisomerase IV.


Assuntos
Bacillus anthracis/química , DNA Topoisomerase IV/química , Manganês/química , Mutação , Níquel/química , Subunidades Proteicas/química , Água/química , Alanina/química , Alanina/genética , Antibacterianos/química , Bacillus anthracis/enzimologia , Cátions Bivalentes , Ciprofloxacina/química , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/genética , DNA Bacteriano/química , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/química , Modelos Moleculares , Moxifloxacina , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Inibidores da Topoisomerase/química , Valina/química , Valina/genética
5.
J Struct Biol ; 186(1): 181-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24607412

RESUMO

Bacillus anthracis and other pathogenic Bacillus species form spores that are surrounded by an exosporium, a balloon-like layer that acts as the outer permeability barrier of the spore and contributes to spore survival and virulence. The exosporium consists of a hair-like nap and a paracrystalline basal layer. The filaments of the nap are comprised of trimers of the collagen-like glycoprotein BclA, while the basal layer contains approximately 20 different proteins. One of these proteins, BxpB, forms tight complexes with BclA and is required for attachment of essentially all BclA filaments to the basal layer. Another basal layer protein, ExsB, is required for the stable attachment of the exosporium to the spore. To determine the organization of BclA and BxpB within the exosporium, we used cryo-electron microscopy, cryo-sectioning and crystallographic analysis of negatively stained exosporium fragments to compare wildtype spores and mutant spores lacking BclA, BxpB or ExsB (ΔbclA, ΔbxpB and ΔexsB spores, respectively). The trimeric BclA filaments are attached to basal layer surface protrusions that appear to be trimers of BxpB. The protrusions interact with a crystalline layer of hexagonal subunits formed by other basal layer proteins. Although ΔbxpB spores retain the hexagonal subunits, the basal layer is not organized with crystalline order and lacks basal layer protrusions and most BclA filaments, indicating a central role for BxpB in exosporium organization.


Assuntos
Bacillus anthracis/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Glicoproteínas de Membrana/ultraestrutura , Bacillus anthracis/fisiologia , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Crioultramicrotomia , Análise de Fourier , Técnicas de Inativação de Genes , Glicoproteínas de Membrana/genética , Esporos Bacterianos/ultraestrutura , Difração de Raios X
6.
ACS Chem Biol ; 8(12): 2660-8, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24047414

RESUMO

Quinolones, which target gyrase and topoisomerase IV, are the most widely prescribed antibacterials worldwide. Unfortunately, their use is threatened by the increasing prevalence of target-mediated drug resistance. Greater than 90% of mutations that confer quinolone resistance act by disrupting enzyme-drug interactions coordinated by a critical water-metal ion bridge. Quinazolinediones are quinolone-like drugs but lack the skeletal features necessary to support the bridge interaction. These compounds are of clinical interest, however, because they retain activity against the most common quinolone resistance mutations. We utilized a chemical biology approach to determine how quinazolinediones overcome quinolone resistance in Bacillus anthracis topoisomerase IV. Quinazolinediones that retain activity against quinolone-resistant topoisomerase IV do so primarily by establishing novel interactions through the C7 substituent, rather than the drug skeleton. Because some quinolones are highly active against human topoisomerase IIα, we also determined how clinically relevant quinolones discriminate between the bacterial and human enzymes. Clinically relevant quinolones display poor activity against topoisomerase IIα because the human enzyme cannot support drug interactions mediated by the water-metal ion bridge. However, the inclusion of substituents that allow quinazolinediones to overcome topoisomerase IV-mediated quinolone resistance can cause cross-reactivity against topoisomerase IIα. Therefore, a major challenge in designing drugs that overcome quinolone resistance lies in the ability to identify substituents that mediate strong interactions with the bacterial, but not the human, enzymes. On the basis of our understanding of quinolone-enzyme interactions, we have identified three compounds that display high activity against quinolone-resistant B. anthracis topoisomerase IV but low activity against human topoisomerase IIα.


Assuntos
Antibacterianos/química , Antígenos de Neoplasias/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quinazolinonas/química , Quinolonas/química , Antibacterianos/farmacologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Bacillus anthracis/química , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Cátions Bivalentes , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerase IV/química , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Cinética , Magnésio/química , Magnésio/metabolismo , Mutação , Quinazolinonas/farmacologia , Quinolonas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Água/química
7.
Nucleic Acids Res ; 41(8): 4628-39, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23460203

RESUMO

Although quinolones are the most commonly prescribed antibacterials, their use is threatened by an increasing prevalence of resistance. The most common causes of quinolone resistance are mutations of a specific serine or acidic residue in the A subunit of gyrase or topoisomerase IV. These amino acids are proposed to serve as a critical enzyme-quinolone interaction site by anchoring a water-metal ion bridge that coordinates drug binding. To probe the role of the proposed water-metal ion bridge, we characterized wild-type, GrlA(E85K), GrlA(S81F/E85K), GrlA(E85A), GrlA(S81F/E85A) and GrlA(S81F) Bacillus anthracis topoisomerase IV, their sensitivity to quinolones and related drugs and their use of metal ions. Mutations increased the Mg(2+) concentration required to produce maximal quinolone-induced DNA cleavage and restricted the divalent metal ions that could support quinolone activity. Individual mutation of Ser81 or Glu85 partially disrupted bridge function, whereas simultaneous mutation of both residues abrogated protein-quinolone interactions. Results provide functional evidence for the existence of the water-metal ion bridge, confirm that the serine and glutamic acid residues anchor the bridge, demonstrate that the bridge is the primary conduit for interactions between clinically relevant quinolones and topoisomerase IV and provide a likely mechanism for the most common causes of quinolone resistance.


Assuntos
Antibacterianos/química , DNA Topoisomerase IV/química , DNA Topoisomerase IV/efeitos dos fármacos , Metais/química , Quinolonas/química , Antibacterianos/farmacologia , Bacillus anthracis/enzimologia , Cátions Bivalentes/química , Ciprofloxacina/química , Ciprofloxacina/farmacologia , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , Resistência a Medicamentos , Magnésio/química , Mutação , Quinazolinonas/química , Quinazolinonas/farmacologia , Água/química
8.
Biochemistry ; 51(1): 370-81, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22126453

RESUMO

Bacillus anthracis, the causative agent of anthrax, is considered a serious threat as a bioweapon. The drugs most commonly used to treat anthrax are quinolones, which act by increasing the levels of DNA cleavage mediated by topoisomerase IV and gyrase. Quinolone resistance most often is associated with specific serine mutations in these enzymes. Therefore, to determine the basis for quinolone action and resistance, we characterized wild-type B. anthracis topoisomerase IV, the GrlA(S81F) and GrlA(S81Y) quinolone-resistant mutants, and the effects of quinolones and a related quinazolinedione on these enzymes. Ser81 is believed to anchor a water-Mg(2+) bridge that coordinates quinolones to the enzyme through the C3/C4 keto acid. Consistent with this hypothesized bridge, ciprofloxacin required increased Mg(2+) concentrations to support DNA cleavage by GrlA(S81F) topoisomerase IV. The three enzymes displayed similar catalytic activities in the absence of drugs. However, the resistance mutations decreased the affinity of topoisomerase IV for ciprofloxacin and other quinolones, diminished quinolone-induced inhibition of DNA religation, and reduced the stability of the enzyme-quinolone-DNA ternary complex. Wild-type DNA cleavage levels were generated by mutant enzymes at high quinolone concentrations, suggesting that increased drug potency could overcome resistance. 8-Methyl-quinazoline-2,4-dione, which lacks the quinolone keto acid (and presumably does not require the water-Mg(2+) bridge to mediate protein interactions), was more potent than quinolones against wild-type topoisomerase IV and was equally efficacious. Moreover, it maintained high potency and efficacy against the mutant enzymes, effectively inhibited DNA religation, and formed stable ternary complexes. Our findings provide an underlying biochemical basis for the ability of quinazolinediones to overcome clinically relevant quinolone resistance mutations in bacterial type II topoisomerases.


Assuntos
Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/enzimologia , DNA Topoisomerase IV/química , Farmacorresistência Bacteriana , Quinolonas/química , Bacillus anthracis/genética , DNA Girase/genética , DNA Topoisomerase IV/antagonistas & inibidores , Interações Medicamentosas/genética , Farmacorresistência Bacteriana/genética , Mutagênese Sítio-Dirigida , Quinolonas/farmacologia
9.
J Bacteriol ; 192(19): 5053-62, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20675481

RESUMO

Bacillus anthracis spores, the etiological agents of anthrax, possess a loosely fitting outer layer called the exosporium that is composed of a basal layer and an external hairlike nap. The filaments of the nap are formed by trimers of the collagenlike glycoprotein BclA. Multiple pentasaccharide and trisaccharide side chains are O linked to BclA. The nonreducing terminal residue of the pentasaccharide side chain is the unusual sugar anthrose. A plausible biosynthetic pathway for anthrose biosynthesis has been proposed, and an antABCD operon encoding four putative anthrose biosynthetic enzymes has been identified. In this study, we genetically and biochemically characterized the activities of these enzymes. We also used mutant B. anthracis strains to determine the effects on BclA glycosylation of individually inactivating the genes of the anthrose operon. The inactivation of antA resulted in the appearance of BclA pentasaccharides containing anthrose analogs possessing shorter side chains linked to the amino group of the sugar. The inactivation of antB resulted in BclA being replaced with only trisaccharides, suggesting that the enzyme encoded by the gene is a dTDP-ß-L-rhamnose α-1,3-L-rhamnosyl transferase that attaches the fourth residue of the pentasaccharide side chain. The inactivation of antC and antD resulted in the disappearance of BclA pentasaccharides and the appearance of a tetrasaccharide lacking anthrose. These phenotypes are entirely consistent with the proposed roles for the antABCD-encoded enzymes in anthrose biosynthesis. Purified AntA was then shown to exhibit ß-methylcrotonyl-coenzyme A (CoA) hydratase activity, as we predicted. Similarly, we confirmed that purified AntC had aminotransferase activity and that purified AntD displayed N-acyltransferase activity.


Assuntos
Amino Açúcares/biossíntese , Amino Açúcares/genética , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Proteínas de Bactérias/metabolismo , Desoxiglucose/análogos & derivados , Óperon/fisiologia , Proteínas de Bactérias/genética , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão , Desoxiglucose/biossíntese , Desoxiglucose/genética , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Óperon/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
10.
Mol Microbiol ; 76(6): 1527-38, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20444088

RESUMO

The outermost layer of the Bacillus anthracis spore, the exosporium, is composed of a paracrystalline basal layer and an external hair-like nap. The nap is formed from a single collagen-like glycoprotein, while the basal layer contains many different proteins, including a 186-amino acid protein called ExsB. In this study, we discovered that ExsB is unusually highly phosphorylated, with at least 14 of its 19 threonine residues modified. The phosphorylated threonines are included in seven contiguous approximately 12-residue imperfect repeats, which presumably contain kinase recognition sequences. We demonstrated that a B. anthracis DeltaexsB mutant unable to synthesize ExsB produced spores with an exosporium that was readily sloughed, indicating that ExsB was required for stable exosporium attachment. This unstable exosporium also lacked the enzyme alanine racemase, which is normally tightly associated with the exosporium. Additionally, purified DeltaexsB spores lacking a visible exosporium were devoid of most exosporium proteins but, surprisingly, retained the putative exosporium proteins BxpC and CotB-1. Finally, we showed that transcription of the exsB gene occurred only during the late stages of sporulation, and we used an active and phosphorylated ExsB-EGFP fusion protein to monitor ExsB localization to wild-type and DeltabxpB mutant exosporia.


Assuntos
Bacillus anthracis/química , Bacillus anthracis/metabolismo , Proteínas de Bactérias/análise , Parede Celular/química , Parede Celular/metabolismo , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Alanina Racemase/análise , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Deleção de Genes , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes de Fusão/análise , Treonina/metabolismo
11.
J Bacteriol ; 191(4): 1303-10, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19074397

RESUMO

Spores of Bacillus anthracis are enclosed by an exosporium composed of a basal layer and an external hair-like nap. The nap is apparently formed by a single glycoprotein, while the basal layer contains many different structural proteins and several enzymes. One of the enzymes is Alr, an alanine racemase capable of converting the spore germinant l-alanine to the germination inhibitor d-alanine. Unlike other characterized exosporium proteins, Alr is nonuniformly distributed in the exosporium and might have a second spore location. In this study, we demonstrated that expression of the alr gene, which encodes Alr, is restricted to sporulating cells and that the bulk of alr transcription and Alr synthesis occurs during the late stages of sporulation. We also mapped two alr promoters that are differentially active during sporulation and might be involved in the atypical localization of Alr. Finally, we constructed a Deltaalr mutant of B. anthracis that lacks Alr and examined the properties of the spores produced by this strain. Mature Deltaalr spores germinate more efficiently in the presence of l-alanine, presumably because of their inability to convert exogenous l-alanine to d-alanine, but they respond normally to other germinants. Surprisingly, the production of mature spores by the Deltaalr mutant is defective because approximately one-half of the nascent spores germinate and lose their resistance properties before they are released from the mother cell. This phenotype suggests that an important function of Alr is to produce D-alanine during the late stages of sporulation to suppress premature germination of the developing spore.


Assuntos
Alanina Racemase/metabolismo , Bacillus anthracis/enzimologia , Bacillus anthracis/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Alanina Racemase/genética , Bacillus anthracis/citologia , Ciclo Celular , Mutação , Regiões Promotoras Genéticas , Esporos Bacterianos/enzimologia , Esporos Bacterianos/fisiologia
12.
J Bacteriol ; 190(7): 2350-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18245286

RESUMO

The exosporium of Bacillus anthracis spores consists of a basal layer and an external hair-like nap. The nap is composed primarily of the glycoprotein BclA, which contains a collagen-like region with multiple copies of a pentasaccharide side chain. This oligosaccharide possesses an unusual terminal sugar called anthrose, followed by three rhamnose residues and a protein-bound N-acetylgalactosamine. Based on the structure of anthrose, we proposed an enzymatic pathway for its biosynthesis. Examination of the B. anthracis genome revealed six contiguous genes that could encode the predicted anthrose biosynthetic enzymes. These genes are transcribed in the same direction and appear to form two operons. We introduced mutations into the B. anthracis chromosome that either delete the promoter of the putative upstream, four-gene operon or delete selected genes in both putative operons. Spores produced by strains carrying mutations in the upstream operon completely lacked or contained much less anthrose, indicating that this operon is required for anthrose biosynthesis. In contrast, inactivation of the downstream, two-gene operon did not alter anthrose content. Additional experiments confirmed the organization of the anthrose operon and indicated that it is transcribed from a sigma(E)-specific promoter. Finally, we demonstrated that anthrose biosynthesis is not restricted to B. anthracis as previously suggested.


Assuntos
Amino Açúcares/biossíntese , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Desoxiglucose/análogos & derivados , Óperon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Northern Blotting , Cromatografia Gasosa , Desoxiglucose/biossíntese , Genes Bacterianos , Teste de Complementação Genética , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Transcrição Gênica
13.
Hum Gene Ther ; 17(6): 669-82, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16776575

RESUMO

Adenoviruses (Ad) have been extensively studied as gene delivery vectors in gene therapy and as vaccine carriers. The cell-mediated cytotoxicity induced by Ad is of great interest in both applications. However, the mechanism underlying Ad-specific cytotoxic T lymphocyte (CTL) generation and effector function remains unclear. In this study, we used a novel MHC class I tetramer and an in vivo CTL assay to examine the role of CD28, perforin, Fas ligand (FasL), and TNF-alpha in the generation and function of Ad-specific CTLs in vivo. During the primary response, there was a significant defect in both the generation and in vivo effector function of Ad-specific CTLs in CD28-/- mice, but not in CD4+ T cell-depleted mice or CD4-/- mice. The relative role of CTL effector molecules was assayed by in vivo CTL assay in perforin- or FasL-mutant mice, using donor cells from Fas-deficient or TNFR1/TNFR2-deficient mice. The results indicated that the in vivo CTL activity is mediated mainly by perforin. In the absence of perforin, production of FasL, but not TNF-alpha, by the CTLs results in lower level Ad-specific killing of target cells. These results provide important implications concerning the development of safe and effective Ad vectors for gene therapy and vaccines.


Assuntos
Adenoviridae/imunologia , Antígenos CD28/genética , Vetores Genéticos/imunologia , Glicoproteínas de Membrana/genética , Linfócitos T Citotóxicos/imunologia , Fatores de Necrose Tumoral/genética , Adenoviridae/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteína Ligante Fas , Feminino , Vetores Genéticos/administração & dosagem , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina , Proteínas Citotóxicas Formadoras de Poros , Fator de Necrose Tumoral alfa/metabolismo
14.
Front Biosci ; 11: 1998-2006, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16368574

RESUMO

MicroRNAs (miRNAs) have been suggested as suppressors of numerous target genes in human cells. In this report, we present gene chip array data indicating that in the absence of miRNA sequences, complete human introns are similarly capable of coordinating expression of large numbers of gene products at spatially diverse sites within the genome. The expression of selected intronic sequences (6a, 14b and 23) derived from the cystic fibrosis transmembrane conductance regulator (CFTR) gene caused extensive and specific transcriptional changes in epithelial cells (HeLa) that do not normally express this gene product. Each intron initiated a distinctive pattern of gene transcription. Affected genes such as FOXF1, sucrase-isomaltase, collagen, interferon, complement and thrombospondin 1 have previously been linked to CFTR function or are known to contribute to the related processes of epithelial differentiation and repair. A possible regulatory function of this nature has not been demonstrated previously for non-coding sequences within eukaryotic DNA. The results are consistent with the observation that splicesomal introns are found only in eukaryotic organisms and that the number of introns increases with phylogenetic complexity.


Assuntos
Regulação da Expressão Gênica , Íntrons , MicroRNAs/genética , Diferenciação Celular , Linhagem Celular , Biologia Computacional , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , DNA/química , Éxons , Genoma , Células HeLa , Humanos , Lentivirus/genética , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Transdução de Sinais , Spliceossomos/metabolismo , Transcrição Gênica , Cicatrização
15.
Cancer Res ; 64(18): 6610-5, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15374975

RESUMO

Escherichia coli purine nucleoside phosphorylase (PNP) expressed in tumors converts relatively nontoxic prodrugs into membrane-permeant cytotoxic compounds with high bystander activity. In the present study, we examined tumor regressions resulting from treatment with E. coli PNP and fludarabine phosphate (F-araAMP), a clinically approved compound used in the treatment of hematologic malignancies. We tested bystander killing with an adenoviral construct expressing E. coli PNP and then more formally examined thresholds for the bystander effect, using both MuLv and lentiviral vectoring. Because of the importance of understanding the mechanism of bystander action and the limits to this anticancer strategy, we also evaluated in vivo variables related to the expression of E. coli PNP (level of E. coli PNP activity in tumors, ectopic expression in liver, percentage of tumor cells transduced in situ, and accumulation of active metabolites in tumors). Our results indicate that F-araAMP confers excellent in vivo dose-dependent inhibition of bystander tumor cells, including strong responses in subcutaneous human glioma xenografts when 95 to 97.5% of the tumor mass is composed of bystander cells. These findings define levels of E. coli PNP expression necessary for antitumor activity with F-araAMP and demonstrate new potential for a clinically approved compound in solid tumor therapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Escherichia coli/genética , Terapia Genética/métodos , Purina-Núcleosídeo Fosforilase/genética , Fosfato de Vidarabina/análogos & derivados , Fosfato de Vidarabina/farmacologia , Adenoviridae/genética , Animais , Antimetabólitos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Terapia Combinada , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Vetores Genéticos/genética , Glioma/tratamento farmacológico , Glioma/enzimologia , Glioma/genética , Humanos , Lentivirus/genética , Camundongos , Camundongos Nus , Vírus da Leucemia Murina de Moloney/genética , Purina-Núcleosídeo Fosforilase/biossíntese , Purina-Núcleosídeo Fosforilase/metabolismo , Transfecção/métodos , Fosfato de Vidarabina/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Viral Immunol ; 16(2): 169-82, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12828868

RESUMO

Vaccines that stimulate both cellular and humoral immunity will probably be needed to control many infectious diseases. Previously, our laboratory generated a vaccine vector that uses poliovirus genomes (replicons) in which the capsid genes have been replaced by foreign proteins. In the current study, we have evaluated the immune responses induced by immunization using poliovirus replicons encoding green fluorescent protein (GFP). Although intramuscular administration of replicons resulted in GFP expression in the muscle, the levels of anti-GFP antibodies in serum were low compared to those of mice immunized with soluble, recombinant GFP (rGFP). Intramuscular booster immunization with rGFP in animals primed with replicons encoding GFP resulted in production of both serum IgG1 and IgG2a GFP-specific antibodies. The cells isolated from spleens of animals primed with replicons and boosted with rGFP secreted IFN-gamma after in vitro stimulation with rGFP. Intramuscular immunization of animals with a single dose of replicons encoding GFP followed by two intranasal applications of rGFP resulted in serum GFP-specific IgG1 and IgG2a isotypes, consistent with induction of both humoral and cellular responses. The results of this study establish that immunization with replicons followed by boost with soluble antigen, even at a different site, can generate a more diverse immune response compared with immunization regimen using soluble antigen alone. This strategy could be exploited for the development of new vaccine approaches against infectious diseases.


Assuntos
Imunização , Proteínas Luminescentes/imunologia , Proteínas de Membrana , Poliovirus/imunologia , Replicon/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Antígenos/administração & dosagem , Antígenos/genética , Antígenos/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Proteínas de Fluorescência Verde , Humanos , Imunização Secundária , Imunoglobulina G/sangue , Injeções Intramusculares , Interferon gama/biossíntese , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Poliovirus/genética , Receptores Virais/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Replicon/genética , Solubilidade , Baço/citologia , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA