Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10360-10366, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947380

RESUMO

We have used high-voltage Kelvin probe force microscopy to map the spatial distribution of electrical potential, dropped along curved current-carrying conducting domain walls, in x-cut single-crystal ferroelectric lithium niobate thin films. We find that in-operando potential profiles and extracted electric fields, associated with p-n junctions contained within the walls, can be fully rationalized through expected variations in wall resistivity alone. There is no need to invoke additional physics (carrier depletion zones and space-charge fields) normally associated with extrinsically doped semiconductor p-n junctions. Indeed, we argue that this should not even be expected, as inherent Fermi level differences between p and n regions, at the core of conventional p-n junction behavior, cannot occur in domain walls that are surrounded by a common matrix. This is important for domain-wall nanoelectronics, as such in-wall junctions will neither act as diodes nor facilitate transistors in the same way as extrinsic semiconducting systems do.

2.
Adv Mater ; 34(32): e2204298, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35733393

RESUMO

Recently, electrically conducting heterointerfaces between dissimilar band insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport and fundamental aspects of conduction have been thoroughly explored. Perhaps surprisingly, similar studies on conceptually much simpler conducting homointerfaces, such as domain walls, are not nearly so well developed. Addressing this disparity, magnetoresistance is herein reported in approximately conical 180° charged domain walls, in partially switched ferroelectric thin-film single-crystal lithium niobate. This system is ideal for such measurements: first, the conductivity difference between domains and domain walls is unusually large (a factor of 1013 ) and hence currents driven through the thin film, between planar top and bottom electrodes, are overwhelmingly channeled along the walls; second, when electrical contact is made to the top and bottom of the domain walls and a magnetic field is applied along their cone axes, then the test geometry mirrors that of a Corbino disk: a textbook arrangement for geometric magnetoresistance measurement. Data imply carriers with extremely high room-temperature Hall mobilities of up to ≈3700 cm2 V-1 s-1 . This is an unparalleled value for oxide interfaces (and for bulk oxides) comparable to mobilities in other systems seen at cryogenic, rather than at room, temperature.

3.
Adv Mater ; 33(16): e2008068, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33734520

RESUMO

During switching, the microstructure of a ferroelectric normally adapts to align internal dipoles with external electric fields. Favorably oriented dipolar regions (domains) grow at the expense of those in unfavorable orientations and this is manifested in a predictable field-induced motion of the walls that separate one domain from the next. Here, the discovery that specific charged 90°domain walls in copper-chlorine boracite move in the opposite direction to that expected, increasing the size of the domain in which polarization is anti-aligned with the applied field, is reported. Polarization-field (P-E) hysteresis loops, inferred from optical imaging, show negative gradients and non-transient negative capacitance, throughout the P-E cycle. Switching currents (generated by the relative motion between domain walls and sensing electrodes) confirm this, insofar as their signs are opposite to those expected conventionally. For any given bias, the integrated switching charge due to this anomalous wall motion is directly proportional to time, indicating that the magnitude of the negative capacitance component should be inversely related to frequency. This passes Jonscher's test for the misinterpretation of positive inductance and gives confidence that field-induced motion of these specific charged domain walls generates a measurable negative capacitance contribution to the overall dielectric response.

4.
Nanoscale ; 10(41): 19638, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30307010

RESUMO

Correction for 'Giant resistive switching in mixed phase BiFeO3via phase population control' by David Edwards et al., Nanoscale, 2018, 10, 17629-17637.

5.
Nanoscale ; 10(37): 17629-17637, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30204201

RESUMO

Highly-strained coherent interfaces, between rhombohedral-like (R) and tetragonal-like (T) phases in BiFeO3 thin films, often show enhanced electrical conductivity in comparison to non-interfacial regions. In principle, changing the population and distribution of these interfaces should therefore allow different resistance states to be created. However, doing this controllably has been challenging to date. Here, we show that local thin film phase microstructures (and hence R-T interface densities) can be changed in a thermodynamically predictable way (predictions made using atomistic simulations) by applying different combinations of mechanical stress and electric field. We use both pressure and electric field to reversibly generate metastable changes in microstructure that result in very large changes of resistance of up to 108%, comparable to those seen in Tunnelling Electro-Resistance (TER) devices.

6.
J Phys Condens Matter ; 29(30): 304001, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28643699

RESUMO

Since the 1935 work of Landau-Lifshitz and of Kittel in 1946 all ferromagnetic, ferroelectric, and ferroelastic domains have been thought to be straight-sided with domain widths proportional to the square root of the sample thickness. We show in the present work that this is not true. We also discover period doubling domains predicted by Metaxas et al (2008 Phys. Rev. Lett. 99 217208) and modeled by Wang and Zhao (2015 Sci. Rep. 5 8887). We examine non-equilibrium ferroic domain structures in perovskite oxides with respect to folding, wrinkling, and relaxation and suggest that structures are kinetically limited and in the viscous flow regime predicted by Metaxas et al in 2008 but never observed experimentally. Comparisons are made with liquid crystals and hydrodynamic instabilities, including chevrons, and fractional power-law relaxation. As Shin et al (2016 Soft Matter 12 3502) recently emphasized: 'An understanding of how these folds initiate, propagate, and interact with each other is still lacking'. Inside each ferroelastic domain are ferroelectric 90° nano-domains with 10 nm widths and periodicity in agreement with the 10 nm theoretical minima predicted by Feigl et al (2014 Nat. Commun. 5 4677). Evidence is presented for domain-width period doubling, which is common in polymer films but unknown in ferroic domains. A discussion of the folding-to-period doubling phase transition model of Wang and Zhao is included.

7.
Nat Commun ; 8: 15105, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508870

RESUMO

Ferroelectric domain walls constitute a completely new class of sheet-like functional material. Moreover, since domain walls are generally writable, erasable and mobile, they could be useful in functionally agile devices: for example, creating and moving conducting walls could make or break electrical connections in new forms of reconfigurable nanocircuitry. However, significant challenges exist: site-specific injection and annihilation of planar walls, which show robust conductivity, has not been easy to achieve. Here, we report the observation, mechanical writing and controlled movement of charged conducting domain walls in the improper-ferroelectric Cu3B7O13Cl. Walls are straight, tens of microns long and exist as a consequence of elastic compatibility conditions between specific domain pairs. We show that site-specific injection of conducting walls of up to hundreds of microns in length can be achieved through locally applied point-stress and, once created, that they can be moved and repositioned using applied electric fields.

8.
Nano Lett ; 14(8): 4230-7, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25058751

RESUMO

Using piezoresponse force microscopy, we have observed the progressive development of ferroelectric flux-closure domain structures and Landau-Kittel-type domain patterns, in 300 nm thick single-crystal BaTiO3 platelets. As the microstructural development proceeds, the rate of change of the domain configuration is seen to decrease exponentially. Nevertheless, domain wall velocities throughout are commensurate with creep processes in oxide ferroelectrics. Progressive screening of macroscopic destabilizing fields, primarily the surface-related depolarizing field, successfully describes the main features of the observed kinetics. Changes in the separation of domain-wall vertex junctions prompt a consideration that vertex-vertex interactions could be influencing the measured kinetics. However, the expected dynamic signatures associated with direct vertex-vertex interactions are not resolved. If present, our measurements confine the length scale for interaction between vertices to the order of a few hundred nanometers.

9.
Adv Mater ; 26(2): 293-8, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24136810

RESUMO

Ferroelectric domain wall injection has been demonstrated by engineering of the local electric field, using focused ion beam milled defects in thin single crystal lamellae of KTiOPO4 (KTP). The electric field distribution (top) displays localized field hot-spots, which correlate with nucleation events (bottom). Designed local field variations can also dictate subsequent domain wall mobility, demonstrating a new paradigm in ferroelectric domain wall control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA