Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Can J Microbiol ; : 1-6, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34516930

RESUMO

When nano-sized titanium dioxide (nano-TiO2) absorbs ultra-violet (UV-A) radiation, it produces reactive oxygen species that can be toxic to bacteria. We used the agronomically beneficial nitrogen-fixing bacterium Sinorhizobium meliloti strain 1021 as a model microorganism to detect nano-TiO2 toxicity. Sinorhizobium meliloti was exposed to aqueous dispersions of micrometer-sized TiO2 (micron-TiO2, 44 µm) or nanometer-sized TiO2 (nano-TiO2, 21 nm) at nominal concentrations of 0, 100, 300, 600, 900, and 1800 mg TiO2/L. There were fewer viable S. meliloti cells after exposure to nano-TiO2 under dark and UV-A light conditions. Nano-TiO2 was more toxic to S. meliloti with UV-A irradiation (100% mortality at 100 mg TiO2/L) than under dark conditions (100% mortality at 900 mg TiO2/L). Micron-TiO2 concentrations less than 300 mg TiO2/L had no effect on S. meliloti viability under dark or UV-A light conditions. Exposure to 600 mg/L or more of micron-TiO2 under UV-A light could also photo-kill S. meliloti cells (100% mortality). Further studies are needed to ascertain whether nano-TiO2 interferes with the growth of N2-fixing microorganisms in realistic agricultural environments.

2.
Anal Chem ; 89(4): 2505-2513, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28192905

RESUMO

The lack of an efficient and standardized method to disperse soil particles and quantitatively subsample the nanoparticulate fraction for characterization analyses is hindering progress in assessing the fate and toxicity of metallic engineered nanomaterials in the soil environment. This study investigates various soil extraction and extract preparation techniques for their ability to remove nanoparticulate Ag from a field soil amended with biosolids contaminated with engineered silver nanoparticles (AgNPs), while presenting a suitable suspension for quantitative single-particle inductively coupled plasma mass spectroscopy (SP-ICP-MS) analysis. Extraction parameters investigated included reagent type (water, NaNO3, KNO3, tetrasodium pyrophosphate (TSPP), tetramethylammonium hydroxide (TMAH)), soil-to-reagent ratio, homogenization techniques as well as procedures commonly used to separate nanoparticles from larger colloids prior to analysis (filtration, centrifugation, and sedimentation). We assessed the efficacy of the extraction procedure by testing for the occurrence of potential procedural artifacts (dissolution, agglomeration) using a dissolved/particulate Ag mass ratio and by monitoring the amount of Ag mass in discrete particles. The optimal method employed 2.5 mM TSPP used in a 1:100 (m/v) soil-to-reagent ratio, with ultrasonication to enhance particle dispersion and sedimentation to settle out the micrometer-sized particles. A spiked-sample recovery analysis shows that 96% ± 2% of the total Ag mass added as engineered AgNP is recovered, which includes the recovery of 84.1% of the particles added, while particle recovery in a spiked method blank is ∼100%, indicating that both the extraction and settling procedure have a minimal effect on driving transformation processes. A soil dilution experiment showed that the method extracted a consistent proportion of nanoparticulate Ag (9.2% ± 1.4% of the total Ag) in samples containing 100%, 50%, 25%, and 10% portions of the AgNP-contaminated test soil. The nanoparticulate Ag extracted by this method represents the upper limit of the potentially dispersible nanoparticulate fraction, thus providing a benchmark with which to make quantitative comparisons, while presenting a suspension suitable for a myriad of other characterization analyses.

3.
Sci Total Environ ; 571: 1128-35, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27481455

RESUMO

We investigated the effects of a commercial pigment grade rutile TiO2 on the terrestrial isopod Porcellio scaber in three locations that differed in terms of abiotic and biotic conditions: the laboratory, open air, and the closed barn. Mortality and isopod energy reserves (digestive gland total proteins, lipids and carbohydrates) were not affected following 14days exposure to up to 1000mg TiO2 per kg dry leaves (mg/kg) under any experimental scenario. However, in the field tests, isopods consumption of TiO2-coated leaves was reduced compared to that of uncoated leaves and the decrease was not dose-dependent. The highest reduction was in the closed barn (45-56%) rather than in the open-air (38-40%). In laboratory-based food choice tests, isopods neither preferred nor avoided leaves coated with TiO2, suggesting that rather than sensing the TiO2 on the leaves directly, the isopods under open-air and barn exposure responded to altered attractiveness and/or palatability of the TiO2 amended leaves. We propose that this could be due to altered microbial population on the leaves, a hypothesis that requires further investigation. Although short-term exposure to atmospheric deposition of up to 1000mg/kg commercial TiO2 is unlikely to pose an immediate threat to isopod mortality and energy balance, reduced leaf feeding may have implications for the decomposition of plant material.


Assuntos
Corantes/toxicidade , Corylus/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Isópodes/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Titânio/toxicidade , Animais
4.
Environ Sci Technol ; 48(14): 8135-42, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24992481

RESUMO

Soil toxicity tests for metal oxide nanoparticles often include micrometer-sized oxide and metal salt treatments to distinguish between toxicity from nanometer-sized particles, non-nanometer-sized particles, and dissolved ions. Test result will be confounded if each chemical form has different effects on soil solution chemistry. We report on changes in soil solution chemistry over 56 days-the duration of some standard soil toxicity tests-in three soils amended with 500 mg/kg Cu as nanometer-sized CuO (nano), micrometer-sized CuO (micrometer), or Cu(NO3)2 (salt). In the CuO-amended soils, the log Cu2+ activity was initially low (minimum -9.48) and increased with time (maximum -5.20), whereas in the salt-amended soils it was initially high (maximum -4.80) and decreased with time (minimum -6.10). The Cu2+ activity in the nano-amended soils was higher than in the micrometer-amended soils for at least the first 11 days, and lower than in the salt-amended soils for at least 28 d. The pH, and dissolved Ca and Mg concentrations in the CuO-amended soils were similar, but the salt-amended soils had lower pH for at least 14 d, and higher Ca and Mg concentrations throughout the test. Soil pretreatments such as leaching and aging prior to toxicity tests are suggested.


Assuntos
Cobre/química , Nanopartículas/toxicidade , Tamanho da Partícula , Poluentes do Solo/análise , Solo/química , Testes de Toxicidade , Cátions , Cobre/análise , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura , Pós , Padrões de Referência , Solubilidade , Soluções , Fatores de Tempo
5.
Environ Sci Technol ; 46(2): 1111-8, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22148900

RESUMO

¹H NMR-based metabolomics was used to examine the response of Eisenia fetida earthworms raised from juveniles for 20-23 weeks in soil spiked with either 20 or 200 mg/kg of a commercially available uncoated titanium dioxide (TiO(2)) nanomaterial (nominal diameter of 5 nm). To distinguish responses specific to particle size, soil treatments spiked with a micrometer-sized TiO(2) material (nominal diameter, <45 µm) at the same concentrations (20 and 200 mg/kg) were also included in addition to an unspiked control soil. Multivariate statistical analysis of the (1)H NMR spectra for aqueous extracts of E. fetida tissue suggested that earthworms exhibited significant changes in their metabolic profile following TiO(2) exposure for both particle sizes. The observed earthworm metabolic changes appeared to be consistent with oxidative stress, a proposed mechanism of toxicity for nanosized TiO(2). In contrast, a prior study had observed no impairment of E. fetida survival, reproduction, or growth following exposure to the same TiO(2) spiked soils. This suggests that (1)H NMR-based metabolomics provides a more sensitive measure of earthworm response to TiO(2) materials in soil and that further targeted assays to detect specific cellular or molecular level damage to earthworms caused by chronic exposure to TiO(2) are warranted.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Oligoquetos/efeitos dos fármacos , Solo/química , Titânio/química , Titânio/toxicidade , Animais , Nanoestruturas/química , Nanoestruturas/toxicidade , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Fatores de Tempo
6.
Environ Toxicol Chem ; 31(1): 184-93, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21993953

RESUMO

Nanometer-sized titanium dioxide (nano-TiO(2) ) is found in a number of commercial products; however, its effects on soil biota are largely unknown. In the present study, earthworms (Eisenia andrei and Eisenia fetida) were exposed to three types of commercially available, uncoated TiO(2) nanomaterials with nominal diameters of 5, 10, and 21 nm. Nanomaterials were characterized for particle size, agglomeration, surface charge, chemical composition, and purity. Standard lethality, reproduction, and avoidance tests, as well as a juvenile growth test, were conducted in artificial soil or field soil amended with nano-TiO(2) by two methods, liquid dispersion and dry powder mixing. All studies included a micrometer-sized TiO(2) control. Exposure to field and artificial soil containing between 200 and 10,000 mg nano-TiO(2) per kilogram of dry soil (mg/kg) had no significant effect (p > 0.05) on juvenile survival and growth, adult earthworm survival, cocoon production, cocoon viability, or total number of juveniles hatched from these cocoons. However, earthworms avoided artificial soils amended with nano-TiO(2) . The lowest concentration at which avoidance was observed was between 1,000 and 5,000 mg nano-TiO(2) per kilogram of soil, depending on the TiO(2) nanomaterial applied. Furthermore, earthworms differentiated between soils amended with 10,000 mg/kg nano-TiO(2) and micrometer-sized TiO(2) . A positive relationship between earthworm avoidance and TiO(2) specific surface area was observed, but the relationship between avoidance and primary particle size was not determined because of the agglomeration and aggregation of nano-TiO(2) materials. Biological mechanisms that may explain earthworm avoidance of nano-TiO(2) are discussed. Results of the present study indicate that earthworms can detect nano-TiO(2) in soil, although exposure has no apparent effect on survival or standard reproductive parameters.


Assuntos
Comportamento Animal/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Titânio/toxicidade , Animais , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/fisiologia , Reprodução/efeitos dos fármacos , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA