Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37703250

RESUMO

Nitrogen use efficiency is an important index in ruminants and can be indirectly evaluated through the N isotopic discrimination between the animal and its diet (Δ15Nanimal-diet). The concentration and source of N may determine both the extent of the N isotopic discrimination in bacteria and N use efficiency. We hypothesised that the uptake and release of ammonia by rumen bacteria will affect the natural 15N enrichment of the bacterial biomass over their substrates (Δ15Nbacteria-substrate) and thereby further impacting Δ15Nanimal-diet. To test this hypothesis, two independent in vitro experiments were conducted using two contrasting N sources (organic vs inorganic) at different levels either in pure rumen bacteria culture incubations (Experiment #1) or in mixed rumen cultures (Experiment #2). In Experiment #1, tryptone casein or ammonium chloride were tested at low (1 mM N) and high (11.5 mM N) concentrations on three rumen bacterial strains (Fibrobacter succinogenes, Eubacterium limosum and Xylanibacter ruminicola) incubated in triplicate in anaerobic batch monocultures during 48h. In Experiment #2 mixed rumen cultures were incubated during 120 h with peptone or ammonium chloride at five different levels of N (1.5, 3, 4.5, 6 and 12-mM). In experiment #1, Δ15Nbacteria-substrate was lowest when the ammonia-consumer bacterium Fibrobacter succinogenes was grown on ammonium chloride, and highest when the proteolytic bacterial strain Xylanibacter ruminicola was grown on tryptone. In experiment #2, Δ15Nbacteria-substrate was lower with inorganic (ammonium chloride) vs organic (peptone) N source. A strong negative correlation between Δ15Nbacteria-substrate and Rikenellaceae_RC9_gut_group, a potential fibrolytic rumen bacterium, was detected. Together, our results showed that Δ15Nbacteria-substrate may change according to the balance between synthesis of microbial protein from ammonia versus non-ammonia N sources and confirm the key role of rumen bacteria as modulators of Δ15Nanimal-diet.


Assuntos
Peptonas , Rúmen , Animais , Isótopos de Nitrogênio , Cloreto de Amônio , Bactérias , Nitrogênio , Amônia , Bacteroides
2.
J Appl Microbiol ; 132(3): 1652-1665, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34623737

RESUMO

AIMS: Yak is a dominant ruminant, well adapted to grazing on pasture year around in the harsh climate of the 3000-meter-high Qinghai-Tibetan Plateau. The complex microbial community that resides within the yak rumen is responsible for fermentation and contributes to its climatic adaptation. This study aimed to characterize the rumen microbiota responses to wide seasonal variations, especially those necessary for survival in the cold seasons. METHODS AND RESULTS: In the present study, we performed 16s rRNA gene sequencing to investigate the seasonal variations in microbiota composition, diversity and associated volatile fatty acids (VFAs) in yak rumen. The results showed that rumen microbiota were dominated by Bacteroides (72.13%-78.54%) and Firmicutes; the relative abundance of Firmicutes was higher in summer (17.44%) than in winter (10.67%; p < 0.05). The distribution of taxa differed among spring, summer and winter rumen communities (PERMANOVA, p = 0.001), whereas other taxa (e.g., Fibrobacter, Verrucomicrobia, Anaerostipes and Paludibacter), which could potentially help overcome harsh climate conditions were observed in higher abundance during the cold spring and winter seasons. The highest total VFA concentration in the yak rumen was obtained in summer (p < 0.05), followed by spring and winter, and both positive and negative correlations between VFAs and specific genera were revealed. CONCLUSIONS: Microbiota in yak rumen appear to be highly responsive to seasonal variations. Considering environmental factors, we suggest that seasonal adaptation by microbial communities in rumen enables their hosts to survive seasonal scarcity and cold stress in the spring and winter. SIGNIFICANCE AND IMPACT OF STUDY: The present study furthers our understanding of how microbial adaptation to seasonal variations in nutrient availability and climate may function in high plateau ruminants, providing insights into the tripartite relationship between the environment, host and microbiota.


Assuntos
Microbiota , Rúmen , Animais , Bovinos , Ácidos Graxos Voláteis , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Estações do Ano
3.
Biology (Basel) ; 10(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34571820

RESUMO

The main objective of this study was to compare the effect of supplementing beef cattle with Desmanthus virgatus cv. JCU2, D. bicornutus cv. JCU4, D. leptophyllus cv. JCU7 and lucerne on in vivo methane (CH4) emissions measured by open-circuit respiration chambers (OC) or the GreenFeed emission monitoring (GEM) system. Experiment 1 employed OC and utilized sixteen yearling Brangus steers fed a basal diet of Rhodes grass (Chloris gayana) hay in four treatments-the three Desmanthus cultivars and lucerne (Medicago sativa) at 30% dry matter intake (DMI). Polyethylene glycol (PEG) was added to the diets to neutralize tannin binding and explore the effect on CH4 emissions. Experiment 2 employed GEM and utilized forty-eight animals allocated to four treatments including a basal diet of Rhodes grass hay plus the three Desmanthus cultivars in equal proportions at 0%, 15%, 30% and 45% DMI. Lucerne was added to equilibrate crude protein content in all treatments. Experiment 1 showed no difference in CH4 emissions between the Desmanthus cultivars, between Desmanthus and lucerne or between Desmanthus and the basal diet. Experiment 2 showed an increase in CH4 emissions in the three levels containing Desmanthus. It is concluded that on high-quality diets, Desmanthus does not reduce CH4 emissions.

5.
Microorganisms ; 8(10)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049981

RESUMO

This study aimed to characterize the rumen microbiota structure of cattle grazing in tropical rangelands throughout seasons and their responses in rumen ecology and productivity to a N-based supplement during the dry season. Twenty pregnant heifers grazing during the dry season of northern Australia were allocated to either N-supplemented or un-supplemented diets and monitored through the seasons. Rumen fluid, blood, and feces were analyzed before supplementation (mid-dry season), after two months supplementation (late-dry season), and post supplementation (wet season). Supplementation increased average daily weight gain (ADWG), rumen NH3-N, branched fatty acids, butyrate and acetic:propionic ratio, and decreased plasma δ15N. The supplement promoted bacterial populations involved in hemicellulose and pectin degradation and ammonia assimilation: Bacteroidales BS11, Cyanobacteria, and Prevotella spp. During the dry season, fibrolytic populations were promoted: the bacteria Fibrobacter, Cyanobacteria and Kiritimatiellaeota groups; the fungi Cyllamyces; and the protozoa Ostracodinium. The wet season increased the abundances of rumen protozoa and fungi populations, with increases of bacterial families Lachnospiraceae, Ruminococcaceae, and Muribaculaceae; the protozoa Entodinium and Eudiplodinium; the fungi Pecoramyces; and the archaea Methanosphera. In conclusion, the rumen microbiota of cattle grazing in a tropical grassland is distinctive from published studies that mainly describe ruminants consuming better quality diets.

6.
Front Microbiol ; 10: 861, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114550

RESUMO

The standardization of collection and processing methods for rumen samples is crucial to reduce the level of errors that may affect the analysis and interpretation of the data. The aim of this study was to compare two processing methods and their impacts on the microbial community composition analysis, from material that was either immediately frozen or samples that were stored as cell pellets after removing the supernatant prior to freezing. Eight rumen-fistulated Brahman steers received chloroform as an antimethanogenic compound for 21 days. Rumen fluid samples (60 mL per animal) were collected using a probe covered with two layers of cheesecloth at 3 h post feeding at day 0 prior-treatment (control period) and day 21 of treatment. One sub-set of samples were placed in dry ice and stored at -80°C (Method 1) for subsequent DNA extraction, while a second subset of samples was centrifuged, the supernatant removed and the microbial pellet and rumen contents placed in dry ice and stored at -80°C (Method 2) prior to DNA extractions. Phylogenetic based methods (Illumina Miseq) targeting the 16S rRNA gene were used to characterize the bacterial and archaeal communities from both collection methods for the control and treatment periods. The results from this study showed that the chloroform treatment was significantly different for all beta diversity measures regardless of the processing method used. Significant differences in the relative abundances of some bacteria and archaea, such as Elusimicrobia, Fibrobacteres, Lentisphaerae, Spirochaetes, and Verrucomicrobia and Methanomassiliicoccaceae, were observed at higher levels in the Method 2. These microbial populations are known to have fragile cell wall structures and are susceptible to cell lysis. Regardless of the processing method used, both identified the key microbial groups and can be used to compare the relative shifts in the rumen microbiome between treatments. However, immediately freezing samples might alter the abundance of material from species that are more readily lysed and will not be suitable for studies that aim to assign absolute abundance values to these species within the rumen.

7.
ISME J ; 12(12): 2942-2953, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30068938

RESUMO

The genus Methanosphaera is a well-recognized but poorly characterized member of the mammalian gut microbiome, and distinctive from Methanobrevibacter smithii for its ability to induce a pro-inflammatory response in humans. Here we have used a combination of culture- and metagenomics-based approaches to expand the representation and information for the genus, which has supported the examination of their phylogeny and physiological capacity. Novel isolates of the genus Methanosphaera were recovered from bovine rumen digesta and human stool, with the bovine isolate remarkable for its large genome size relative to other Methanosphaera isolates from monogastric hosts. To substantiate this observation, we then recovered seven high-quality Methanosphaera-affiliated population genomes from ruminant and human gut metagenomic datasets. Our analyses confirm a monophyletic origin of Methanosphaera spp. and that the colonization of monogastric and ruminant hosts favors representatives of the genus with different genome sizes, reflecting differences in the genome content needed to persist in these different habitats.


Assuntos
Microbioma Gastrointestinal , Tamanho do Genoma/genética , Metagenômica , Methanobacteriaceae/genética , Animais , Bovinos , Fezes/microbiologia , Humanos , Methanobacteriaceae/fisiologia , Methanobrevibacter/genética , Methanobrevibacter/fisiologia , Filogenia , Rúmen/microbiologia
8.
Front Microbiol ; 9: 1582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131771

RESUMO

The aim of this study was to investigate the effects of 3-nitrooxypropanol (3-NOP) and chloroform on methane (CH4) and H2 production, ruminal metabolites and microbial community structure in cattle fed a tropical forage diet. Eight rumen-fistulated steers were fed a roughage hay diet (Rhodes grass; Chloris gayana) for 31 days (control period). Four animals received the antimethanogenic compound chloroform (1.6 g chloroform-cyclodextrin/100 kg live weight (LW)) while the other four received 3-NOP (2.5 g 3-NOP/animal/day) for 21 days. Methane decrease compared with control period was similar for both treatments (30-38%) with no differences for expelled H2 between controls and treatments. Daily weight gain (DWG) was significantly increased when animals were treated with 3-NOP compared with chloroform and control. Regarding the ruminal fermentation parameters increases in ammonia, acetate and branched chain fatty acids were observed with both compounds compared with the controls. Also, methylamines, alcohols and dimethyl sulfone (DMSO2) concentrations were significantly increased with the treatments compared with control, being greater with 3-NOP. The rumen microbial analyses revealed a similar profile for both treatments, with a shift in operational taxonomic units (OTUs) assigned to the Prevotellaceae and Campylobacteraceae family. Moreover, major archaeal OTUs associated with Methanobrevibacter and Methanosphaera were significantly affected to varying extents based on the inhibitory treatments compared to the control. The abundance of the Methanobrevibacter spp. was decreased by 3-NOP and chloroform, while the Methanomassiliicoccaceae family was inhibited only by 3-NOP. The results suggest that despite the specific mode of action of 3-NOP on methanogens, inhibition of methanogenesis by both compounds resulted in similar responses in metabolism and microbial community structure in the rumen. We hypothesized that these changes were driven by the redirection of metabolic hydrogen ([H]) by both treatments. Therefore results from previous publications using chloroform as an inhibitor of methanogenesis may be useful in predicting ruminal microbiota and fermentation responses to 3-NOP.

9.
Front Microbiol ; 8: 1871, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051749

RESUMO

Strategies to manage metabolic hydrogen ([H]) in the rumen should be considered when reducing ruminant methane (CH4) emissions. However, little is known about the use of dietary treatments to stimulate rumen microorganisms capable of capturing the [H] available when CH4 is inhibited in vivo. The effects of the phenolic compound phloroglucinol on CH4 production, [H] flows and subsequent responses in rumen fermentation and microbial community composition when methanogenesis is inhibited were investigated in cattle. Eight rumen fistulated Brahman steers were randomly allocated in two groups receiving chloroform as an antimethanogenic compound for 21 days. Following that period one group received chloroform + phloroglucinol for another 16 days, whilst the other group received only chloroform during the same period. The chloroform treatment resulted in a decrease in CH4 production and an increase in H2 expelled with a shift in rumen fermentation toward higher levels of propionate and formate and lower levels of acetate at day 21 of treatment. Bacterial operational taxonomic units (OTUs) assigned to Prevotella were promoted whilst Archaea and Synergistetes OTUs were decreased with the chloroform treatment as expected. The shift toward formate coincided with increases in Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, and Methanobrevibacter ruminantium species. The addition of chloroform + phloroglucinol in the rumen resulted in a decrease of H2 expelled (g) per kg of DMI and moles of H2 expelled per mol of CH4 decreased compared with the chloroform only treated animals. A shift toward acetate and a decrease in formate were observed for the chloroform + phloroglucinol-treated animals at day 37. These changes in the rumen fermentation profile were accompanied by a relative increase of OTUs assigned to Coprococcus spp., which could suggest this genus is a significant contributor to the metabolism of this phenolic compound in the rumen. This study demonstrates for the first time in vivo that under methanogenesis inhibition, H2 gas accumulation can be decreased by redirecting [H] toward alternative sinks through the nutritional stimulation of specific microbial groups. This results in the generation of metabolites of value for the host while also helping to maintain a low H2 partial pressure in the methane-inhibited rumen.

10.
Front Microbiol ; 8: 385, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326079

RESUMO

Ureolytic bacteria are key organisms in the rumen producing urease enzymes to catalyze the breakdown of urea to ammonia for the synthesis of microbial protein. However, little is known about the diversity and distribution of rumen ureolytic microorganisms. The urease gene (ureC) has been the target gene of choice for analysis of the urea-degrading microorganisms in various environments. In this study, we investigated the predominant ureC genes of the ureolytic bacteria in the rumen of dairy cows using high-throughput sequencing. Six dairy cows with rumen fistulas were assigned to a two-period cross-over trial. A control group (n = 3) were fed a total mixed ration without urea and the treatment group (n = 3) were fed rations plus 180 g urea per cow per day at three separate times. Rumen bacterial samples from liquid and solid digesta and rumen wall fractions were collected for ureC gene amplification and sequencing using Miseq. The wall-adherent bacteria (WAB) had a distinct ureolytic bacterial profile compared to the solid-adherent bacteria (SAB) and liquid-associated bacteria (LAB) but more than 55% of the ureC sequences did not affiliate with any known taxonomically assigned urease genes. Diversity analysis of the ureC genes showed that the Shannon and Chao1 indices for the rumen WAB was lower than those observed for the SAB and LAB (P < 0.01). The most abundant ureC genes were affiliated with Methylococcaceae, Clostridiaceae, Paenibacillaceae, Helicobacteraceae, and Methylophilaceae families. Compared with the rumen LAB and SAB, relative abundance of the OTUs affiliated with Methylophilus and Marinobacter genera were significantly higher (P < 0.05) in the WAB. Supplementation with urea did not alter the composition of the detected ureolytic bacteria. This study has identified significant populations of ureolytic WAB representing genera that have not been recognized or studied previously in the rumen. The taxonomic classification of rumen ureC genes in the dairy cow indicates that the majority of ureolytic bacteria are yet to be identified. This survey has expanded our knowledge of ureC gene information relating to the rumen ureolytic microbial community, and provides a basis for obtaining regulatory targets of ureolytic bacteria to moderate urea hydrolysis in the rumen.

11.
Eur J Nutr ; 56(6): 2193-2206, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27401929

RESUMO

PURPOSE: To investigate the effects of two cereal soluble dietary fibres (SDF), wheat arabinoxylan (AX) and oat-mixed linkage glucans (MLG), on fermentative end-products and bacterial community profiles of the porcine caecum (Cae) and distal colon (DC). We hypothesised that feeding pigs these SDF would stimulate Cae and DC carbohydrate fermentation, resulting in a modification of the resident bacterial communities. METHODS: Five groups of six pigs were each fed one diet based on wheat starch (WS) only, or treatment diets in which some WS was replaced by 10 % AX, or 10 % MLG, a combination of 5 % AX:5 % MLG (AXMLG), or completely replaced with ground whole wheat. Post-euthanasia, Cae and DC digesta were collected for analysis of fermentative end-products, and bacterial community profiles were determined by 16S rRNA gene amplicon 454 pyrosequencing. RESULTS: Across all the SDF-containing diets, predominantly in the proximal region of the large intestine, Prevotella, Lactobacillus, Mitsuokella and Streptococcus were most significantly influenced (P < 0.05), while notable changes were observed for the Ruminococcaceae and Lachnospiraceae families in the Cae and DC. The addition of MLG or AXMLG had the greatest effect of influencing bacterial profiles, reducing sequence proportions assigned to the genus Clostridium, considered detrimental to gut health, with associated increases in short-chain fatty acid and reduced ammonia concentrations. CONCLUSIONS: This study demonstrated how the cereal SDF AX and MLG altered the large intestinal bacterial community composition, particularly proximally, further giving insights into how diets rich in specific complex carbohydrates shift the bacterial population, by increasing abundance and promoting greater diversity of those bacteria considered beneficial to gut health.


Assuntos
Ração Animal , Ceco/microbiologia , Microbioma Gastrointestinal , Glucanos/administração & dosagem , Xilanos/administração & dosagem , Animais , Ceco/efeitos dos fármacos , Dieta/veterinária , Fibras na Dieta/administração & dosagem , Grão Comestível/química , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Fermentação , Lactobacillus/isolamento & purificação , Prevotella/isolamento & purificação , RNA Ribossômico 16S/isolamento & purificação , Amido/química , Streptococcus/isolamento & purificação , Suínos , Triticum/química
12.
Front Microbiol ; 7: 1122, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486452

RESUMO

Management of metabolic hydrogen ([H]) in the rumen has been identified as an important consideration when reducing ruminant CH4 emissions. However, little is known about hydrogen flux and microbial rumen population responses to CH4 inhibition when animals are fed with slowly degradable diets. The effects of the anti-methanogenic compound, chloroform, on rumen fermentation, microbial ecology, and H2/CH4 production were investigated in vivo. Eight rumen fistulated Brahman steers were fed a roughage hay diet (Rhode grass hay) or roughage hay:concentrate diet (60:40) with increasing levels (low, mid, and high) of chloroform in a cyclodextrin matrix. The increasing levels of chloroform resulted in an increase in H2 expelled as CH4 production decreased with no effect on dry matter intakes. The amount of expelled H2 per mole of decreased methane, was lower for the hay diet suggesting a more efficient redirection of hydrogen into other microbial products compared with hay:concentrate diet. A shift in rumen fermentation toward propionate and branched-chain fatty acids was observed for both diets. Animals fed with the hay:concentrate diet had both higher formate concentration and H2 expelled than those fed only roughage hay. Metabolomic analyses revealed an increase in the concentration of amino acids, organic, and nucleic acids in the fluid phase for both diets when methanogenesis was inhibited. These changes in the rumen metabolism were accompanied by a shift in the microbiota with an increase in Bacteroidetes:Firmicutes ratio and a decrease in Archaea and Synergistetes for both diets. Within the Bacteroidetes family, some OTUs assigned to Prevotella were promoted under chloroform treatment. These bacteria may be partly responsible for the increase in amino acids and propionate in the rumen. No significant changes were observed for abundance of fibrolytic bacteria, protozoa, and fungi, which suggests that fiber degradation was not impaired. The observed 30% decrease in methanogenesis did not adversely affect rumen metabolism and the rumen microbiota was able to adapt and redirect [H] into other microbial end-products for both diets. However, it is also required dietary supplements or microbial treatments to capture the additional H2 expelled by the animal to further improve rumen digestive efficiency.

13.
Archaea ; 2016: 5916067, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27274707

RESUMO

Host factors are regarded as important in shaping the archaeal community in the rumen but few controlled studies have been performed to demonstrate this across host species under the same environmental conditions. A study was designed to investigate the structure of the methanogen community in the rumen of two indigenous (yak and Tibetan sheep) and two introduced domestic ruminant (cattle and crossbred sheep) species raised and fed under similar conditions on the high altitude Tibetan Plateau. The methylotrophic Methanomassiliicoccaceae was the predominant archaeal group in all animals even though Methanobrevibacter are usually present in greater abundance in ruminants globally. Furthermore, within the Methanomassiliicoccaceae family members from Mmc. group 10 and Mmc. group 4 were dominant in Tibetan Plateau ruminants compared to Mmc. group 12 found to be highest in other ruminants studied. Small ruminants presented the highest number of sequences that belonged to Methanomassiliicoccaceae compared to the larger ruminants. Although the methanogen community structure was different among the ruminant species, there were striking similarities between the animals in this environment. This indicates that factors such as the extreme environmental conditions and diet on the Tibetan Plateau might have a greater impact on rumen methanogen community compared to host differences.


Assuntos
Archaea/isolamento & purificação , Archaea/metabolismo , Biodiversidade , Metano/metabolismo , Rúmen/microbiologia , Ruminantes , Animais , Archaea/classificação , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , Genes de RNAr , Dados de Sequência Molecular , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Tibet
14.
Anaerobe ; 39: 173-82, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27060275

RESUMO

Methanogenic archaea (methanogens) are common inhabitants of the mammalian intestinal tract. In ruminants, they are responsible for producing abundant amounts of methane during digestion of food, but selected bioactive plants and compounds may inhibit this activity. Recently, we have identified that, Biserrula pelecinus L. (biserrula) is one such plant and the current study investigated the specific anti-methanogenic activity of the plant. Bioassay-guided extraction and fractionation, coupled with in vitro fermentation batch culture were used to select the most bioactive fractions of biserrula. The four fractions were then tested against five species of methanogens grown in pure culture. Fraction bioactivity was assessed by measuring methane production and amplification of the methanogen mcrA gene. Treatments that showed bioactivity were subcultured in fresh broth without the bioactive fraction to distinguish between static and cidal effects. All four fractions were active against pure cultures, but the F2 fraction was the most consistent inhibitor of both methane production and cell growth, affecting four species of methanogens and also producing equivocal-cidal effects on the methanogens. Other fractions had selective activity affecting only some methanogens, or reducing either methane production or methanogenic cell growth. In conclusion, the anti-methanogenic activity of biserrula can be linked to compounds contained in selected bioactive fractions, with the F2 fraction strongly affecting key rumen methanogens. Further study is required to identify the specific plant compounds in biserrula that are responsible for the anti-methanogenic activity. These findings will help devise novel strategies to control methanogen populations and activity in the rumen, and consequently contribute in reducing greenhouse gas emissions from ruminants.


Assuntos
Euryarchaeota/efeitos dos fármacos , Fabaceae/química , Metano/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Técnicas de Cultura Celular por Lotes , Bovinos , Fracionamento Químico/métodos , Meios de Cultura/química , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/isolamento & purificação , Euryarchaeota/metabolismo , Fermentação/efeitos dos fármacos , Metano/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Rúmen/microbiologia
15.
Nutrition ; 32(4): 491-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26740253

RESUMO

OBJECTIVES: The aim of this study was to investigate how moderately increased dietary red meat combined with a soluble fiber (wheat arabinoxylan [AX]) alters the large intestinal microbiota in terms of fermentative end products and microbial community profiles in pigs. METHODS: Four groups of 10 pigs were fed Western-type diets containing two amounts of red meat, with or without a solubilized wheat AX-rich fraction for 4 wk. After euthanasia, fermentative end products (short-chain fatty acids, ammonia) of digesta from four sections of large intestine were measured. Di-amino-pimelic acid was a measure of total microbial biomass, and bacterial profiles were determined using a phylogenetic microarray. A factorial model determined effects of AX and meat content. RESULTS: Arabinoxylan was highly fermentable in the cecum, as indicated by increased concentrations of short-chain fatty acids (particularly propionate). Protein fermentation end products were decreased, as indicated by the reduced ammonia and branched-chain ratio although this effect was less prominent distally. Microbial profiles in the distal large intestine differed in the presence of AX (including promotion of Faecalibacterium prausnitzii), consistent with an increase in carbohydrate versus protein fermentation. Increased di-amino-pimelic acid (P < 0.0001) suggested increased microbial biomass for animals fed AX. CONCLUSIONS: Solubilized wheat AX has the potential to counteract the effects of dietary red meat by reducing protein fermentation and its resultant toxic end products such as ammonia, as well as leading to a positive shift in fermentation end products and microbial profiles in the large intestine.


Assuntos
Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/microbiologia , Carne Vermelha , Xilanos/farmacocinética , Animais , Biomarcadores , Fenômenos Químicos , Fibras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/farmacocinética , Digestão , Ácidos Graxos Voláteis , Fermentação , Masculino , Modelos Animais , Suínos , Triticum , Xilanos/administração & dosagem
16.
Microb Ecol ; 71(2): 494-504, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26111963

RESUMO

Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Fluoracetatos/metabolismo , Peptídeos/metabolismo , Aminoácidos/química , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Fluoracetatos/análise , Espectrometria de Massas , Peptídeos/química
17.
Front Microbiol ; 6: 1087, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528253

RESUMO

Japanese goats fed a diet of 50% Timothy grass and 50% concentrate with increasing levels of the anti-methanogenic compound, bromochloromethane (BCM) were investigated with respect to the microbial population and functional shifts in the rumen. Microbial ecology methods identified species that exhibited positive and negative responses to the increasing levels of BCM. The methane-inhibited rumen appeared to adapt to the higher H2 levels by shifting fermentation to propionate which was mediated by an increase in the population of H2-consuming Prevotella and Selenomonas spp. Metagenomic analysis of propionate production pathways was dominated by genomic content from these species. Reductive acetogenic marker gene libraries and metagenomics analysis indicate that reductive acetogenic species do not play a major role in the BCM treated rumen.

18.
FEMS Microbiol Lett ; 362(14)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26109360

RESUMO

Molecular information suggests that there is a broad diversity of acetogens in the rumen, distinct from any currently isolated acetogens. We combined molecular analysis with enrichment culture techniques to investigate this diversity further. Methane-inhibited, hydrogenotrophic enrichment cultures produced acetate as the dominant end product. Acetyl-CoA synthase gene analysis revealed putative acetogens in the cultures affiliated with the Lachnospiraceae and Ruminococcaceae as has been found in other rumen studies. No formyltetrahydrofolate synthetase genes affiliating with acetogens or with 'homoacetogen similarity' scores >90% were identified. To further investigate the hydrogenotrophic populations in these cultures and link functional gene information with 16S rRNA gene identity, cultures were subcultured quickly, twice, through medium without exogenous hydrogen, followed by incubation without exogenous hydrogen. Comparison of cultures lacking hydrogen and their parent cultures revealed novel Lachnospiraceae and Ruminococcaceae that diminished in the absence of hydrogen, supporting the hypothesis that they were likely the predominant acetogens in the enrichments. Interestingly, a range of Bacteroidetes rrs sequences that demonstrated <86% identity to any named isolate also diminished in cultures lacking hydrogen. Acetogens or sulphate reducers from the Bacteroidetes have not been reported previously; therefore this observation requires further investigation.


Assuntos
Bacteroidetes/isolamento & purificação , Bovinos/microbiologia , Clostridiales/isolamento & purificação , Hidrogênio/metabolismo , Rúmen/microbiologia , Acetatos/metabolismo , Acetilcoenzima A/genética , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , DNA Bacteriano/genética , Dieta/veterinária , Formiato-Tetra-Hidrofolato Ligase/genética , Metano/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Rúmen/fisiologia , Análise de Sequência de DNA
19.
Annu Rev Anim Biosci ; 3: 447-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25387109

RESUMO

Knowledge gained from early and recent studies that define the functions of microbial populations within the rumen microbiome is essential to allow for directed rumen manipulation strategies. A large number of omic studies have focused on carbohydrate active enzymes either for improved fiber digestion within the animal or for use in industries such as biofuels. Studies of the rumen microbiome with respect to methane production and abatement strategies have led to initiatives for defining the microbiome of low- and high-methane-emitting animals while ensuring optimal feed conversion. With advances in omic technologies, the ability to link host genetics and the rumen microbiome by studying all the biological components (holobiont) through the use of hologenomics has begun. However, a program to culture and isolate microbial species for the purpose of standard microbial characterization to aid in assigning function to genomic data remains critical, especially for genes of unknown function.


Assuntos
Microbiota/genética , Rúmen/microbiologia , Ruminantes/microbiologia , Animais , Fibras na Dieta/metabolismo , Genômica , Metano/biossíntese , Filogenia
20.
BMC Microbiol ; 14: 314, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25495654

RESUMO

BACKGROUND: Forestomach fermentation in Australian marsupials such as wallabies and kangaroos, though analogous to rumen fermentation, results in lower methane emissions. Insights into hydrogenotrophy in these systems could help in devising strategies to reduce ruminal methanogenesis. Reductive acetogenesis may be a significant hydrogen sink in these systems and previous molecular analyses have revealed a novel diversity of putative acetogens in the tammar wallaby forestomach. RESULTS: Methanogen-inhibited enrichment cultures prepared from tammar wallaby forestomach contents consumed hydrogen and produced primarily acetate. Functional gene (formyltetrahydrofolate synthetase and acetyl-CoA synthase) analyses revealed a restricted diversity of Clostridiales species as the putative acetogens in the cultures. A new acetogen (growth on H2/CO2 with acetate as primary end product) designated isolate TWA4, was obtained from the cultures. Isolate TWA4 classified within the Lachnospiraceae and demonstrated >97% rrs identity to previously isolated kangaroo acetogens. Isolate TWA4 was a potent hydrogenotroph and demonstrated excellent mixotrophic growth (concomitant consumption of hydrogen during heterotrophic growth) with glycerol. Mixotrophic growth of isolate TWA4 on glycerol resulted in increased cell densities and acetate production compared to autotrophic growth. Co-cultures with an autotrophic methanogen Methanobrevibacter smithii revealed that isolate TWA4 performed reductive acetogenesis under high hydrogen concentration (>5 mM), but not at low concentrations. Under heterotrophic growth conditions, isolate TWA4 did not significantly stimulate methanogenesis in a co-culture with M. smithii contrary to the expectation for organisms growing fermentatively. CONCLUSIONS: The unique properties of tammar wallaby acetogens might be contributing factors to reduced methanogen numbers and methane emissions from tammar wallaby forestomach fermentation, compared to ruminal fermentation. The macropod forestomach may be a useful source of acetogens for future strategies to reduce methane emissions from ruminants, particularly if these strategies also include some level of methane suppression and/or acetogen stimulation, for example by harnessing mixotrophic growth capabilities.


Assuntos
Acetatos/metabolismo , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/metabolismo , Macropodidae/microbiologia , Estômago/microbiologia , Animais , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genes de RNAr , Glicerol/metabolismo , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Hidrogênio/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA