Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 14(1): 7240, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538671

RESUMO

A key control on the magnitude of coastal eutrophication is the degree to which currents quickly transport nitrogen derived from human sources away from the coast to the open ocean before eutrophication develops. In the Southern California Bight (SCB), an upwelling-dominated eastern boundary current ecosystem, anthropogenic nitrogen inputs increase algal productivity and cause subsurface acidification and oxygen (O 2 ) loss along the coast. However, the extent of anthropogenic influence on eutrophication beyond the coastal band, and the physical transport mechanisms and biogeochemical processes responsible for these effects are still poorly understood. Here, we use a submesoscale-resolving numerical model to document the detailed biogeochemical mass balance of nitrogen, carbon and oxygen, their physical transport, and effects on offshore habitats. Despite management of terrestrial nutrients that has occurred in the region over the last 20 years, coastal eutrophication continues to persist. The input of anthropogenic nutrients promote an increase in productivity, remineralization and respiration offshore, with recurrent O 2 loss and pH decline in a region located 30-90 km from the mainland. During 2013 to 2017, the spatially averaged 5-year loss rate across the Bight was 1.3 mmol m - 3 O 2 , with some locations losing on average up to 14.2 mmol m - 3 O 2 . The magnitude of loss is greater than model uncertainty assessed from data-model comparisons and from quantification of intrinsic variability. This phenomenon persists for 4 to 6 months of the year over an area of 278,40 km 2 ( ∼ 30% of SCB area). These recurrent features of acidification and oxygen loss are associated with cross-shore transport of nutrients by eddies and plankton biomass and their accumulation and retention within persistent eddies offshore within the SCB.


Assuntos
Ecossistema , Eutrofização , Nitrogênio , Oxigênio , Plâncton
2.
Sci Rep ; 13(1): 22148, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092878

RESUMO

Climate change is increasing drought severity worldwide. Ocean discharges of municipal wastewater are a target for potable water recycling. Potable water recycling would reduce wastewater volume; however, the effect on mass nitrogen loading is dependent on treatment. In cases where nitrogen mass loading is not altered or altered minimally, this practice has the potential to influence spatial patterns in coastal eutrophication. We apply a physical-biogeochemical numerical ocean model to understand the influence of nitrogen management and potable wastewater recycling on net primary productivity (NPP), pH, and oxygen. We model several theoretical management scenarios by combining dissolved inorganic nitrogen (DIN) reductions from 50 to 85% and recycling from 0 to 90%, applied to 19 generalized wastewater outfalls in the Southern California Bight. Under no recycling, NPP, acidification, and oxygen loss decline with DIN reductions, which simulated habitat volume expansion for pelagic calcifiers and aerobic taxa. Recycling scenarios under intermediate DIN reduction show patchier areas of pH and oxygen loss with steeper vertical declines relative to a "no recycling" scenario. These patches are diminished under 85% DIN reduction across all recycling levels, suggesting nitrogen management lowers eutrophication risk even with concentrated discharges. These findings represent a novel application of ocean numerical models to investigate the regional effects of idealized outfall management on eutrophication. Additional work is needed to investigate more realistic outfall-specific water recycling and nutrient management scenarios and to contextualize the benefit of these management actions, given accelerating acidification and hypoxia from climate change.

3.
Chaos ; 33(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729098

RESUMO

A general, variational approach to derive low-order reduced models from possibly non-autonomous systems is presented. The approach is based on the concept of optimal parameterizing manifold (OPM) that substitutes more classical notions of invariant or slow manifolds when the breakdown of "slaving" occurs, i.e., when the unresolved variables cannot be expressed as an exact functional of the resolved ones anymore. The OPM provides, within a given class of parameterizations of the unresolved variables, the manifold that averages out optimally these variables as conditioned on the resolved ones. The class of parameterizations retained here is that of continuous deformations of parameterizations rigorously valid near the onset of instability. These deformations are produced through the integration of auxiliary backward-forward systems built from the model's equations and lead to analytic formulas for parameterizations. In this modus operandi, the backward integration time is the key parameter to select per scale/variable to parameterize in order to derive the relevant parameterizations which are doomed to be no longer exact away from instability onset due to the breakdown of slaving typically encountered, e.g., for chaotic regimes. The selection criterion is then made through data-informed minimization of a least-square parameterization defect. It is thus shown through optimization of the backward integration time per scale/variable to parameterize, that skilled OPM reduced systems can be derived for predicting with accuracy higher-order critical transitions or catastrophic tipping phenomena, while training our parameterization formulas for regimes prior to these transitions takes place.

4.
5.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819377

RESUMO

The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow-fast interactions are central to geophysical fluid dynamics. In this study, the related rectification problem of slow manifold closures is addressed when breakdown of slow-to-fast scales deterministic parameterizations occurs due to explosive emergence of fast oscillations on the slow, geostrophic motion. For such regimes, it is shown on the Lorenz 80 model that if 1) the underlying manifold provides a good approximation of the optimal nonlinear parameterization that averages out the fast variables and 2) the residual dynamics off this manifold is mainly orthogonal to it, then no memory terms are required in the Mori-Zwanzig full closure. Instead, the noise term is key to resolve, and is shown to be, in this case, well modeled by a state-independent noise, obtained by means of networks of stochastic nonlinear oscillators. This stochastic parameterization allows, in turn, for rectifying the momentum-balanced slow manifold, and for accurate recovery of the multiscale dynamics. The approach is promising to be further applied to the closure of other more complex slow-fast systems, in strongly coupled regimes.

6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001604

RESUMO

Global change is leading to warming, acidification, and oxygen loss in the ocean. In the Southern California Bight, an eastern boundary upwelling system, these stressors are exacerbated by the localized discharge of anthropogenically enhanced nutrients from a coastal population of 23 million people. Here, we use simulations with a high-resolution, physical-biogeochemical model to quantify the link between terrestrial and atmospheric nutrients, organic matter, and carbon inputs and biogeochemical change in the coastal waters of the Southern California Bight. The model is forced by large-scale climatic drivers and a reconstruction of local inputs via rivers, wastewater outfalls, and atmospheric deposition; it captures the fine scales of ocean circulation along the shelf; and it is validated against a large collection of physical and biogeochemical observations. Local land-based and atmospheric inputs, enhanced by anthropogenic sources, drive a 79% increase in phytoplankton biomass, a 23% increase in primary production, and a nearly 44% increase in subsurface respiration rates along the coast in summer, reshaping the biogeochemistry of the Southern California Bight. Seasonal reductions in subsurface oxygen, pH, and aragonite saturation state, by up to 50 mmol m-3, 0.09, and 0.47, respectively, rival or exceed the global open-ocean oxygen loss and acidification since the preindustrial period. The biological effects of these changes on local fisheries, proliferation of harmful algal blooms, water clarity, and submerged aquatic vegetation have yet to be fully explored.


Assuntos
Carbono/metabolismo , Ecossistema , Eutrofização , Fitoplâncton/fisiologia , Pesqueiros , Humanos , Oceanos e Mares , Oxigênio/metabolismo , Água do Mar/química
7.
Ann Rev Mar Sci ; 13: 227-253, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395349

RESUMO

Frontogenesis is the fluid-dynamical processes that rapidly sharpen horizontal density gradients and their associated horizontal velocity shears. It is a positive feedback process where the ageostrophic, overturning secondary circulation in the cross-front plane accelerates the frontal sharpening until an arrest occurs through frontal instability and other forms of turbulent mixing. Several well-known types of oceanic frontal phenomena are surveyed, their impacts on oceanic system functioning are assessed, and future research is envisioned.


Assuntos
Hidrodinâmica , Modelos Teóricos , Oceanografia/métodos , Fenômenos Biomecânicos , Clima , Humanos , Oceanos e Mares
8.
Sci Adv ; 6(20): eaay3188, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32440538

RESUMO

Climate warming is expected to intensify hypoxia in the California Current System (CCS), threatening its diverse and productive marine ecosystem. We analyzed past regional variability and future changes in the Metabolic Index (Φ), a species-specific measure of the environment's capacity to meet temperature-dependent organismal oxygen demand. Across the traits of diverse animals, Φ exhibits strong seasonal to interdecadal variations throughout the CCS, implying that resident species already experience large fluctuations in available aerobic habitat. For a key CCS species, northern anchovy, the long-term biogeographic distribution and decadal fluctuations in abundance are both highly coherent with aerobic habitat volume. Ocean warming and oxygen loss by 2100 are projected to decrease Φ below critical levels in 30 to 50% of anchovies' present range, including complete loss of aerobic habitat-and thus likely extirpation-from the southern CCS. Aerobic habitat loss will vary widely across the traits of CCS taxa, disrupting ecological interactions throughout the region.


Assuntos
Clima , Ecossistema , Animais , California , Mudança Climática , Peixes , Oxigênio , Temperatura
9.
Sci Rep ; 8(1): 13388, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190530

RESUMO

Oceanic submesoscale currents (SMCs) occur on an scale of 0.1-10 km horizontally and have a large influence on the oceanic variability and on ecosystems. At the mesoscale (10-250 km), oceanic thermal and current feedbacks are known to have a significant influence on the atmosphere and on oceanic dynamics. However, air-sea interactions at the submesoscale are not well known because the small size of SMCs presents observational and simulation barriers. Using high-resolution coupled oceanic and atmospheric models for the Central California region during the upwelling season, we show that the current feedback acting through the surface stress dominates the thermal feedback effect on the ocean and dampens the SMC variability by ≈17% ± 4%. As for the mesoscale, the current feedback induces an ocean sink of energy at the SMCs and a source of atmospheric energy that is related to induced Ekman pumping velocities. However, those additional vertical velocities also cause an increase of the injection of energy by baroclinic conversion into the SMCs, partially counteracting the sink of energy by the stress coupling. These stress coupling effects have important implications in understanding SMC variability and its links with the atmosphere and should be tested in other regions.

10.
Proc Natl Acad Sci U S A ; 115(6): 1162-1167, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29339497

RESUMO

Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s-1 and 0.01 ms-1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material.

11.
Sci Rep ; 7(1): 17747, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255277

RESUMO

Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (sτ [N s m-3]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. sτ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

12.
Nat Commun ; 7: 12811, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27681822

RESUMO

Most of the ocean kinetic energy is contained in the large scale currents and the vigorous geostrophic eddy field, at horizontal scales of order 100 km. To achieve equilibrium the geostrophic currents must viscously dissipate their kinetic energy at much smaller scale. However, geostrophic turbulence is characterized by an inverse cascade of energy towards larger scale, and the pathways of energy toward dissipation are still in question. Here, we present a mechanism, in the context of the Gulf Stream, where energy is transferred from the geostrophic flow to submesoscale wakes through anticyclonic vertical vorticity generation in the bottom boundary layer. The submesoscale turbulence leads to elevated local dissipation and mixing outside the oceanic boundary layers. This process is generic for boundary slope currents that flow in the direction of Kelvin wave propagation. Topographic generation of submesoscale flows potentially provides a new and significant route to energy dissipation for geostrophic flows.

13.
Proc Math Phys Eng Sci ; 472(2189): 20160117, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27279778

RESUMO

This article is a perspective on the recently discovered realm of submesoscale currents in the ocean. They are intermediate-scale flow structures in the form of density fronts and filaments, topographic wakes and persistent coherent vortices at the surface and throughout the interior. They are created from mesoscale eddies and strong currents, and they provide a dynamical conduit for energy transfer towards microscale dissipation and diapycnal mixing. Consideration is given to their generation mechanisms, instabilities, life cycles, disruption of approximately diagnostic force balance (e.g. geostrophy), turbulent cascades, internal-wave interactions, and transport and dispersion of materials. At a fundamental level, more questions remain than answers, implicating a programme for further research.

14.
Proc Natl Acad Sci U S A ; 113(11): 2976-81, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929376

RESUMO

Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.


Assuntos
Organismos Aquáticos , Fontes Hidrotermais , Distribuição Animal , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Biota , Bivalves/crescimento & desenvolvimento , Ecossistema , Gastrópodes/crescimento & desenvolvimento , Variação Genética , Larva , Modelos Teóricos , Oceano Pacífico , Plâncton , Temperatura , Thoracica/crescimento & desenvolvimento , Movimentos da Água
15.
Sci Adv ; 1(4): e1500014, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26601179

RESUMO

Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100.

16.
Nat Commun ; 5: 3294, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24534770

RESUMO

Oceanic mesoscale eddies contribute important horizontal heat and salt transports on a global scale. Here we show that eddy transports are mainly due to individual eddy movements. Theoretical and observational analyses indicate that cyclonic and anticyclonic eddies move westwards, and they also move polewards and equatorwards, respectively, owing to the ß of Earth's rotation. Temperature and salinity (T/S) anomalies inside individual eddies tend to move with eddies because of advective trapping of interior water parcels, so eddy movement causes heat and salt transports. Satellite altimeter sea surface height anomaly data are used to track individual eddies, and vertical profiles from co-located Argo floats are used to calculate T/S anomalies. The estimated meridional heat transport by eddy movement is similar in magnitude and spatial structure to previously published eddy covariance estimates from models, and the eddy heat and salt transports both are a sizeable fraction of their respective total transports.

17.
Proc Natl Acad Sci U S A ; 111(5): 1684-90, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24443553

RESUMO

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them--as filtered through an observable of the system--is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap--defined as the distance between the subdominant RP resonance and the unit circle--plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño-Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally.


Assuntos
Clima , Modelos Teóricos , El Niño Oscilação Sul , Cadeias de Markov , Dinâmica não Linear , Análise Espectral , Processos Estocásticos
18.
Proc Natl Acad Sci U S A ; 110(38): 15207-10, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23922393

RESUMO

Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.


Assuntos
Tempestades Ciclônicas/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Modelos Teóricos , Movimentos da Água , Observação , Oceanos e Mares , Temperatura
19.
Proc Natl Acad Sci U S A ; 107(50): 21349-54, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21115841

RESUMO

Climate models exhibit high sensitivity in some respects, such as for differences in predicted precipitation changes under global warming. Despite successful large-scale simulations, regional climatology features prove difficult to constrain toward observations, with challenges including high-dimensionality, computationally expensive simulations, and ambiguity in the choice of objective function. In an atmospheric General Circulation Model forced by observed sea surface temperature or coupled to a mixed-layer ocean, many climatic variables yield rms-error objective functions that vary smoothly through the feasible parameter range. This smoothness occurs despite nonlinearity strong enough to reverse the curvature of the objective function in some parameters, and to imply limitations on multimodel ensemble means as an estimator of global warming precipitation changes. Low-order polynomial fits to the model output spatial fields as a function of parameter (quadratic in model field, fourth-order in objective function) yield surprisingly successful metamodels for many quantities and facilitate a multiobjective optimization approach. Tradeoffs arise as optima for different variables occur at different parameter values, but with agreement in certain directions. Optima often occur at the limit of the feasible parameter range, identifying key parameterization aspects warranting attention--here the interaction of convection with free tropospheric water vapor. Analytic results for spatial fields of leading contributions to the optimization help to visualize tradeoffs at a regional level, e.g., how mismatches between sensitivity and error spatial fields yield regional error under minimization of global objective functions. The approach is sufficiently simple to guide parameter choices and to aid intercomparison of sensitivity properties among climate models.


Assuntos
Clima , Simulação por Computador , Modelos Teóricos , Algoritmos , Previsões , Aquecimento Global , Temperatura
20.
Proc Natl Acad Sci U S A ; 104(21): 8709-13, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17502623

RESUMO

Atmospheric and oceanic computational simulation models often successfully depict chaotic space-time patterns, flow phenomena, dynamical balances, and equilibrium distributions that mimic nature. This success is accomplished through necessary but non-unique choices for discrete algorithms, parameterizations, and coupled contributing processes that introduce structural instability into the model. Therefore, we should expect a degree of irreducible imprecision in quantitative correspondences with nature, even with plausibly formulated models and careful calibration (tuning) to several empirical measures. Where precision is an issue (e.g., in a climate forecast), only simulation ensembles made across systematically designed model families allow an estimate of the level of relevant irreducible imprecision.


Assuntos
Atmosfera , Simulação por Computador , Oceanos e Mares , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA