Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37903284

RESUMO

Challenges to upscaling metal halide perovskites (MHPs) include mechanical film stresses that accelerate degradation, dominate at the module scale, and can lead to delamination or fracture. In this work, we demonstrate open-air blade coating of single-step coated perovskite as a scalable method to control residual film stress after processing and introduce beneficial compression in the thin film with the use of polymer additives such as gellan gum and corn starch. The optoelectronic properties of MHP films with compression are improved with higher photoluminescence yields. MHP film stability is significantly improved under compression, under humidity, heat, and thermal cycling. By measuring the evolution of film stresses, we demonstrate for the first time that stress relaxation occurs in MHP films with tensile stress that correlates with film degradation. This discovery of a new mechanism underpinning MHP degradation shows that film stress can be used as a parameter to screen MHP devices and modules for quality control before deployment as a design for reliability criterion.

2.
Science ; 379(6633): 683-690, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795834

RESUMO

Inserting an ultrathin low-conductivity interlayer between the absorber and transport layer has emerged as an important strategy for reducing surface recombination in the best perovskite solar cells. However, a challenge with this approach is a trade-off between the open-circuit voltage (Voc) and the fill factor (FF). Here, we overcame this challenge by introducing a thick (about 100 nanometers) insulator layer with random nanoscale openings. We performed drift-diffusion simulations for cells with this porous insulator contact (PIC) and realized it using a solution process by controlling the growth mode of alumina nanoplates. Leveraging a PIC with an approximately 25% reduced contact area, we achieved an efficiency of up to 25.5% (certified steady-state efficiency 24.7%) in p-i-n devices. The product of Voc × FF was 87.9% of the Shockley-Queisser limit. The surface recombination velocity at the p-type contact was reduced from 64.2 to 9.2 centimeters per second. The bulk recombination lifetime was increased from 1.2 to 6.0 microseconds because of improvements in the perovskite crystallinity. The improved wettability of the perovskite precursor solution allowed us to demonstrate a 23.3% efficient 1-square-centimeter p-i-n cell. We demonstrate here its broad applicability for different p-type contacts and perovskite compositions.

3.
ACS Appl Mater Interfaces ; 14(42): 47810-47821, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36251798

RESUMO

Reversible metal electrodeposition (RME) is an emerging and promising method for designing dynamic windows with electrically controllable transmission, excellent color neutrality, and wide dynamic range. Zn is a viable option for metal-based dynamic windows due to its fast switching kinetics and reversibility despite its very negative deposition voltage. In this manuscript, we study the effect of the supporting electrolyte anions for Zn electrodeposition on transparent tin-doped indium oxide. Through systematic additions or removal of components of the electrolytes, we are able to establish a link between the anions and the effectiveness of Zn RME. This insight allows us to design practical two-electrode 25 cm2 Zn dynamic windows that switch to <1% within 20 s. Lastly, we demonstrate that the accumulation of Zn(OH)2 species on the working electrode degrades the optical contrast of Zn windows during long-term cycling. However, the elimination of these species through acid immersion allows the windows to cycle at least 500 times. Reversible Zn electrodeposition in the presence of a polyethylene glycol additive further improves the cycle life to greater than 1000 cycles. Taken together, these studies highlight important design principles for the construction of robust dynamic windows based on Zn RME.

4.
Chem Commun (Camb) ; 58(54): 7495-7498, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35698905

RESUMO

Carbazole-based molecules V1205 and V1206 capable of cross-linking via three vinyl groups were synthesized by a simple process and applied as hole-transporting materials (HTMs) in inverted perovskite solar cells (PSC). Novel HTMs were thermally polymerized to provide films resistant to organic solvents. A PSC with V1205 exhibited a photovoltaic conversion efficiency of 16.9% with good stability.

5.
ACS Energy Lett ; 6(5): 2038-2047, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37152100

RESUMO

Temperature coefficients for maximum power (T PCE), open circuit voltage (V OC), and short circuit current (J SC) are standard specifications included in data sheets for any commercially available photovoltaic module. To date, there has been little work on determining the T PCE for perovskite photovoltaics (PV). We fabricate perovskite solar cells with a T PCE of -0.08 rel %/°C and then disentangle the temperature-dependent effects of the perovskite absorber, contact layers, and interfaces by comparing different device architectures and using drift-diffusion modeling. A main factor contributing to the small T PCE of perovskites is their low intrinsic carrier concentrations with respect to Si and GaAs, which can be explained by its wider band gap. We demonstrate that the unique increase in E g with increasing temperatures seen for perovskites results in a reduction in J SC but positively influences V OC. The current limiting factors for the T PCE in perovskite PV are identified to originate from interfacial effects.

6.
Adv Mater ; 32(50): e2003312, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33175442

RESUMO

Metal halide perovskites (MHPs) have transfixed the photovoltaic (PV) community due to their outstanding and tunable optoelectronic properties coupled to demonstrations of high-power conversion efficiencies (PCE) at a range of bandgaps. This has motivated the field to push perovskites to reach the highest possible performance. One way to increase the efficiency is by fabricating multijunction solar cells, which can split the solar spectrum, reducing thermalization loss. Low-cost all-perovskite tandems have a real chance to soon exceed 30% PCE, which could transform the PV industry. Achieving this goal requires the identification of perovskite sub-cells that are both highly efficient and can be effectively integrated. Herein, it is discussed how to navigate the multiple-choice adventure in choosing between the myriad of options and considerations present when deciding what perovskite materials, contact layers, and processing tools to use. Some of the potential fabrication pitfalls often encountered in MHP based tandem PVs are highlighted, so that they can hopefully be avoided in the future.

7.
Science ; 367(6482): 1097-1104, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139537

RESUMO

Wide-band gap metal halide perovskites are promising semiconductors to pair with silicon in tandem solar cells to pursue the goal of achieving power conversion efficiency (PCE) greater than 30% at low cost. However, wide-band gap perovskite solar cells have been fundamentally limited by photoinduced phase segregation and low open-circuit voltage. We report efficient 1.67-electron volt wide-band gap perovskite top cells using triple-halide alloys (chlorine, bromine, iodine) to tailor the band gap and stabilize the semiconductor under illumination. We show a factor of 2 increase in photocarrier lifetime and charge-carrier mobility that resulted from enhancing the solubility of chlorine by replacing some of the iodine with bromine to shrink the lattice parameter. We observed a suppression of light-induced phase segregation in films even at 100-sun illumination intensity and less than 4% degradation in semitransparent top cells after 1000 hours of maximum power point (MPP) operation at 60°C. By integrating these top cells with silicon bottom cells, we achieved a PCE of 27% in two-terminal monolithic tandems with an area of 1 square centimeter.

8.
Proc Natl Acad Sci U S A ; 116(14): 6624-6629, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886092

RESUMO

Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale freshwater electrolysis would put a heavy strain on vital water resources. Developing cheap electrocatalysts and electrodes that can sustain seawater splitting without chloride corrosion could address the water scarcity issue. Here we present a multilayer anode consisting of a nickel-iron hydroxide (NiFe) electrocatalyst layer uniformly coated on a nickel sulfide (NiSx) layer formed on porous Ni foam (NiFe/NiSx-Ni), affording superior catalytic activity and corrosion resistance in solar-driven alkaline seawater electrolysis operating at industrially required current densities (0.4 to 1 A/cm2) over 1,000 h. A continuous, highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents toward water oxidation and an in situ-generated polyatomic sulfate and carbonate-rich passivating layers formed in the anode are responsible for chloride repelling and superior corrosion resistance of the salty-water-splitting anode.

9.
Chem Rev ; 119(5): 3418-3451, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30444609

RESUMO

This review article examines the current state of understanding in how metal halide perovskite solar cells can degrade when exposed to moisture, oxygen, heat, light, mechanical stress, and reverse bias. It also highlights strategies for improving stability, such as tuning the composition of the perovskite, introducing hydrophobic coatings, replacing metal electrodes with carbon or transparent conducting oxides, and packaging. The article concludes with recommendations on how accelerated testing should be performed to rapidly develop solar cells that are both extraordinarily efficient and stable.

10.
Opt Express ; 26(21): 27441-27460, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469811

RESUMO

Wide-bandgap perovskites are attractive top-cell materials for tandem photovoltaic applications. Comprehensive optical modeling is essential to minimize the optical losses of state-of-the-art perovskite/perovskite, perovskite/CIGS, and perovskite/silicon tandems. Such models require accurate optical constants of wide-bandgap perovskites. Here, we report optical constants determined with ellipsometry and spectrophotometry for two new wide-bandgap, cesium-formamidinium-based perovskites. We validate the optical constants by comparing simulated quantum efficiency and reflectance spectra with measured cell results for semi-transparent single-junction perovskite cells and find less than 0.3 mA/cm2 error in the short-circuit current densities. Such simulations further reveal that reflection and parasitic absorption in the front ITO layer and electron contact are responsible for the biggest optical losses. We also show that the complex refractive index of methylammonium lead triiodide, the most common perovskite absorber for solar cells, can be used to generate approximate optical constants for an arbitrary wide-bandgap perovskite by translating the data along the wavelength axis. Finally, these optical constants are used to map the short-circuit current density of a textured two-terminal perovskite/silicon tandem solar cell as a function of the perovskite thickness and bandgap, providing a guide to nearly 20 mA/cm2 matched current density with any perovskite bandgap between 1.56 and 1.68 eV.

11.
Science ; 361(6408)2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30237326

RESUMO

Perovskite solar cells (PSCs) have witnessed rapidly rising power conversion efficiencies, together with advances in stability and upscaling. Despite these advances, their limited stability and need to prove upscaling remain crucial hurdles on the path to commercialization. We summarize recent advances toward commercially viable PSCs and discuss challenges that remain. We expound the development of standardized protocols to distinguish intrinsic and extrinsic degradation factors in perovskites. We review accelerated aging tests in both cells and modules and discuss the prediction of lifetimes on the basis of degradation kinetics. Mature photovoltaic solutions, which have demonstrated excellent long-term stability in field applications, offer the perovskite community valuable insights into clearing the hurdles to commercialization.

12.
J Am Chem Soc ; 140(40): 12775-12784, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30189142

RESUMO

We apply a series of transient measurements to operational perovskite solar cells of the architecture ITO/PTAA/FA0.83Cs0.17Pb(I0.83Br0.17)3/C60/BCP/Ag, and similar cells with FA0.83MA0.17. The cells show no detectable JV hysteresis. Using photocurrent transients at applied bias we find a ∼1 ms time scale for the electric field screening by mobile ions in these cells. We confirm our interpretation of the transient measurements using a drift-diffusion model. Using Coulometry during field screening relaxation at short circuit, we determine the mobile ion concentration to be ∼1 × 1018/cm3. Using a model with one mobile ion species, the concentration and the screening time require an ion mobility of ∼3 × 10-7 cm2/(V s). As far as we know, this article gives the first direct measurement of the ion mobility and concentration in a fully functional perovskite solar cell. The measured ion mobility is 2 orders of magnitude higher than the highest estimates previously determined using perovskite solar cells and perovskite thin films, and 3 orders of magnitude higher than is frequently used in modeling hysteresis effects. We provide evidence that the fast field screening is due to mobile ions, as opposed to dark injection and trapping of electronic carriers.

13.
Nat Commun ; 9(1): 3458, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150720

RESUMO

Understanding the formation chemistry of metal halide perovskites is key to optimizing processing conditions and realizing enhanced optoelectronic properties. Here, we reveal the structure of the crystalline precursor in the formation of methylammonium lead iodide (MAPbI3) from the single-step deposition of lead chloride and three equivalents of methylammonium iodide (PbCl2 + 3MAI) (MA = CH3NH3). The as-spun film consists of crystalline MA2PbI3Cl, which is composed of one-dimensional chains of lead halide octahedra, coexisting with disordered MACl. We show that the transformation of precursor into perovskite is not favored in the presence of MACl, and thus the gradual evaporation of MACl acts as a self-regulating mechanism to slow the conversion. We propose the stable precursor phase enables dense film coverage and the slow transformation may lead to improved crystal quality. This enhanced chemical understanding is paramount for the rational control of film deposition and the fabrication of superior optoelectronic devices.

14.
Adv Mater ; 30(11)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29359820

RESUMO

Unusual photophysical properties of organic-inorganic hybrid perovskites have not only enabled exceptional performance in optoelectronic devices, but also led to debates on the nature of charge carriers in these materials. This study makes the first observation of intense terahertz (THz) emission from the hybrid perovskite methylammonium lead iodide (CH3 NH3 PbI3 ) following photoexcitation, enabling an ultrafast probe of charge separation, hot-carrier transport, and carrier-lattice coupling under 1-sun-equivalent illumination conditions. Using this approach, the initial charge separation/transport in the hybrid perovskites is shown to be driven by diffusion and not by surface fields or intrinsic ferroelectricity. Diffusivities of the hot and band-edge carriers along the surface normal direction are calculated by analyzing the emitted THz transients, with direct implications for hot-carrier device applications. Furthermore, photogenerated carriers are found to drive coherent terahertz-frequency lattice distortions, associated with reorganizations of the lead-iodide octahedra as well as coupled vibrations of the organic and inorganic sublattices. This strong and coherent carrier-lattice coupling is resolved on femtosecond timescales and found to be important both for resonant and far-above-gap photoexcitation. This study indicates that ultrafast lattice distortions play a key role in the initial processes associated with charge transport.

15.
ACS Appl Mater Interfaces ; 10(6): 5485-5491, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29328620

RESUMO

We study the thermal stability in air of the mixed cation organic-inorganic lead halide perovskites Cs0.17FA0.83Pb(I0.83Br0.17)3 and Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3. For the latter compound, containing both MA+ and FA+ ions, thermal decomposition of the perovskite phase was observed to occur in two stages. The first stage of decomposition occurs at a faster rate compared to the second stage and is only observed at relatively low temperatures (T < 150 °C). For the second stage, we find that both decomposition rate and the activation energy have similar values for Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 and Cs0.17FA0.83Pb(I0.83Br0.17)3, which suggests that the first stage mainly involves reaction of MA+ and the second stage mainly FA+.

16.
J Phys Chem Lett ; 8(17): 4155-4160, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28809493

RESUMO

Molecular dynamics simulations are combined with solid-state NMR measurements to gain insight into the macroscopic structural composition of the π-conjugated polymer poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). The structural and dynamical properties, as established by the NMR analyses, were used to test the local structure of three constitutient mesophases with (i) crystalline backbones and side chains, (ii) lamellar backbones and disordered side chains, or (iii) amorphous backbones and side chains. The relative compositions of these mesophases were then determined from the deconvolution of the 1H and 13C solid-state NMR spectra and dynamic order parameters. Surprisingly, on the basis of molecular dynamics simulations, the powder composition consisted of only 28% of the completely crystalline mesophase, while 23% was lamellar with disordered side chains and 49% amorphous. The protocol presented in this work is a general approach and can be used for elucidating the relative compositions of mesophases in π-conjugated polymers.

17.
J Am Chem Soc ; 139(32): 11117-11124, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28704048

RESUMO

Tin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

18.
Adv Mater ; 29(10)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28004854

RESUMO

Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

19.
Science ; 354(6314): 861-865, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27856902

RESUMO

We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable "all-perovskite" thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

20.
ACS Appl Mater Interfaces ; 8(39): 25896-25904, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27604192

RESUMO

The active layers of perovskite solar cells are also structural layers and are central to ensuring that the structural integrity of the device is maintained over its operational lifetime. Our work evaluating the fracture energies of conventional and inverted solution-processed MAPbI3 perovskite solar cells has revealed that the MAPbI3 perovskite exhibits a fracture resistance of only ∼0.5 J/m2, while solar cells containing fullerene electron transport layers fracture at even lower values, below ∼0.25 J/m2. To address this weakness, a novel styrene-functionalized fullerene derivative, MPMIC60, has been developed as a replacement for the fragile PC61BM and C60 transport layers. MPMIC60 can be transformed into a solvent-resistant material through curing at 250 °C. As-deposited films of MPMIC60 exhibit a marked 10-fold enhancement in fracture resistance over PC61BM and a 14-fold enhancement over C60. Conventional-geometry perovskite solar cells utilizing cured films of MPMIC60 showed a significant, 205% improvement in fracture resistance while exhibiting only a 7% drop in PCE (13.8% vs 14.8% PCE) in comparison to the C60 control, enabling larger VOC and JSC values. Inverted cells fabricated with MPMIC60 exhibited a 438% improvement in fracture resistance with only a 6% reduction in PCE (12.3% vs 13.1%) in comparison to those utilizing PC61BM, again producing a higher JSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA