Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39409565

RESUMO

Cannabis sativa L. is a monotypic genus belonging to the family Cannabaceae. It is one of the oldest species cultivated by humans, believed to have originated in Central Asia. In pivotal judgements in 2016 and 2018, the South African Constitutional Court legalised the use of Cannabis within the country for medicinal and recreational purposes, respectively. These decrees opened opportunities for in-depth research where previously there had been varying sentiments for research to be conducted on the plant. This review seeks to examine the history, genetic diversity, and chemical profile of Cannabis. The cultivation of Cannabis by indigenous people of southern Africa dates back to the eighteenth century. Indigenous rural communities have been supporting their livelihoods through Cannabis farming even before its legalisation. However, there are limited studies on the plant's diversity, both morphologically and genetically, and its chemical composition. Also, there is a lack of proper documentation of Cannabis varieties in southern Africa. Currently, the National Centre for Biotechnology Information (NCBI) has 15 genome assemblies of Cannabis obtained from hemp and drug cultivars; however, none of these are representatives of African samples. More studies are needed to explore the species' knowledge gaps on genetic diversity and chemical profiles to develop the Cannabis sector in southern Africa.

2.
Plants (Basel) ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36771570

RESUMO

The aim of any breeding process is to fully express the targeted, superior/desirable parent characteristic in the progeny. Hybrids are often used in this dynamic, and complex process for which homozygous parents-which may require up to eight generations of back crossing and selection-are required. Doubled haploid (DH) technologies can facilitate the production of true breeding lines faster and in a more efficient manner than the traditional back crossing and selection strategies. Sunflower is the third most important oilseed crop in the world and has no available double haploid induction procedure/technique that can be efficiently used in breeding programs. A reproducible and efficient doubled haploid induction method would be a valuable tool in accelerating the breeding of new elite sunflower varieties. Although several attempts have been made, the establishment of a sunflower doubled haploid induction protocol has remained a challenge owing recalcitrance to in vitro culture regeneration. Approaches for haploid development in other crops are often cultivar specific, difficult to reproduce, and rely on available tissue culture protocols-which on their own are also cultivar and/or species specific. As an out-crossing crop, the lack of a double haploid system limits sunflower breeding and associated improvement processes, thereby delaying new hybrid and trait developments. Significant molecular advances targeting genes, such as the centromeric histone 3 (CenH3) and Matrilineal (MTL) gene with CRISPR/Cas9, and the successful use of viral vectors for the delivery of CRISPR/Cas9 components into plant cells eliminating the in vitro culture bottleneck, have the potential to improve double haploid technology in sunflower. In this review, the different strategies, their challenges, and opportunities for achieving doubled haploids in sunflower are explored.

3.
BMC Genomics ; 14: 75, 2013 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-23375136

RESUMO

BACKGROUND: Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. RESULTS: Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. CONCLUSIONS: The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.


Assuntos
Genômica , Hevea/genética , Análise de Sequência , Alérgenos/genética , Resistência à Doença/genética , Evolução Molecular , Proteínas F-Box/genética , Genoma de Planta/genética , Haploidia , Hevea/imunologia , Hevea/metabolismo , Látex/metabolismo , Anotação de Sequência Molecular , Filogenia , Reguladores de Crescimento de Plantas/genética , Borracha/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Madeira/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA