Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234249

RESUMO

Fullerene derivatives offer great scope for modification of the basic molecule, often called a buckyball. In recent years, they have been the subject of numerous studies, in particular in terms of their applications, including in solar cells. Here, the properties of four recently synthesized fullerene C60 derivatives were examined regarding their optical properties and the efficiency of the charge transfer process, both in fullerene derivatives themselves and in their heterojunctions with poly (3-hexylthiophene). Optical absorption, electron spin resonance (ESR), and time-resolved photoluminescence (TRPL) techniques were applied to study the synthesized molecules. It was shown that the absorption processes in fullerene derivatives are dominated by absorption of the fullerene cage and do not significantly depend on the type of the derivative. It was also found by ESR and TRPL studies that asymmetrical, dipole-like derivatives exhibit stronger light-induced charge transfer properties than their symmetrical counterparts. The observed inhomogeneous broadening of the ESR lines indicated a large disorder of all polymer-fullerene derivative blends. The density functional theory was applied to explain the results of the optical absorption experiments.

2.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164178

RESUMO

New donor-acceptor conjugated alternating or random copolymers containing 1-methyl-2-phenylbenzimidazole and benzothiadiazole (P1), diketopyrrolopyrrole (P4), or both acceptors (P2) are reported. The specific feature of these copolymers is the presence of a permanent dipole-bearing moiety (1-methyl-2-phenyl imidazole (MPI)) fused with the 1,4-phenylene ring of the polymer main chain. For comparative reasons, polymers of the same main chain but deprived of the MPI group were prepared, namely, P5 with diketopyrrolopyrrole and P3 with both acceptors. The presence of the permanent dipole results in an increase of the optical band gap from 1.51 eV in P3 to 1.57 eV in P2 and from 1.49 eV in P5 to 1.55 eV in P4. It also has a measurable effect on the ionization potential (IP) and electrochemical band gap (EgCV), leading to their decrease from 5.00 and 1.83 eV in P3 to 4.92 and 1.79 eV in P2 as well as from 5.09 and 1.87 eV in P5 to 4.94 and 1.81 eV in P4. Moreover, the presence of permanent dipole lowers the exciton binding energy (Eb) from 0.32 eV in P3 to 0.22 eV in P2 and from 0.38 eV in P5 to 0.26 eV in P4. These dipole-induced changes in the polymer properties should be beneficial for photovoltaic applications. Bulk heterojunction solar cells fabricated from these polymers (with PC71BM acceptor) show low series resistance (rs), indicating good electrical transport properties. The measured power conversion efficiency (PCE) of 0.54% is limited by the unfavorable morphology of the active layer.

3.
Molecules ; 26(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809087

RESUMO

In the present work, we report the successful synthesis and characterization of six (two new) fullerene mono- and di-pyrene derivatives based on C60 and C70 fullerenes. The synthesized compounds were characterized by spectral methods (ESI-MS, 1H-NMR, 13C-NMR, UV-Vis, FT-IR, photoluminescence and photocurrent spectroscopy). The energy of HOMO and LUMO levels and the band gaps were determined from cyclic voltammetry and compared with the theoretical values calculated according to the DFT/B3LYP/6-31G(d) and DFT/PBE/6-311G(d,p) approach for fully optimized molecular structures at the DFT/B3LYP/6-31G(d) level. Efficiency of solar cells made of PTB7: C60 and C70 fullerene pyrene derivatives were analyzed based on the determined energy levels of the HOMO and LUMO orbitals of the derivatives as well as the extensive spectral results of fullerene derivatives and their mixtures with PTB7. As a result, we found that the electronic and spectral properties, on which the efficiency of a photovoltaic cell is believed to depend, slightly changes with the number and type of pyrene substituents on the fullerene core. The efficiency of constructed solar cells largely depends on the homogeneity of the photovoltaic layer, which, in turn, is a derivative of the solubility of fullerene derivatives in the solvent used to apply these layers by spincoating.

4.
Materials (Basel) ; 13(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114337

RESUMO

We demonstrate that a GaN nanowire array can be used for efficient charge transfer between the organic photovoltaic layer and silicon in a Si/GaN/P3HT:PC71BM inverted hybrid heterostructure. The band alignment of such a material combination is favorable to facilitate exciton dissociation, carrier separation and electron transport into Si. The ordered nature of the GaN array helps to mitigate the intrinsic performance limitations of the organic active layer. The dependence of photovoltaic performance enhancement on the morphology of the nanostructure with nanowire diameters 30, 50, 60, 100 and 150 nm was studied in detail. The short circuit current was enhanced by a factor of 4.25, while an open circuit voltage increase by 0.32 volts was achieved compared to similar planar layers.

5.
RSC Adv ; 10(73): 44958-44972, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516284

RESUMO

A new unsymmetrical imine with four thiophene rings was synthesized in a one-step reaction, starting from the commercially available and relatively inexpensive reagents. The obtained imine in the form of thin films exhibited photoluminescence properties in the 1.8-2.4 eV energy range and a photoluminescence lifetime of about 0.3 ns. The HOMO and LUMO levels of the imine determined by cyclic voltammetry were at about -5.19 eV and -3.05 eV, respectively. The density functional theory was applied to calculate the geometric and electronic structure of the imine. The UV-Vis spectra showed that the absorption range of the imine overlaps with that of PC70BM, and the absorption peak at the maximum of the imine at 424 nm is located between the two maxima at 404 nm and 461 nm of the fullerene derivative. The electron acceptor and donor activity of the imine was tested in the solar cell architecture: glass/ITO/PEDOT:PSS/active layer/In/Al. The best photovoltaic parameters, with very good reproducibility for each 8 pixels in the cell, were found for the active layer based on ternary mixture PTB7:PC70BM:imine at a weight ratio 8 : 13 : 1, with the power conversion efficiency of about 4%. The external quantum efficiency of devices with the imine was found to be about 40% at 3.3 eV. The thermal imaging together with the recorded current response at increasing potential showed that the presence of imine in the composition has a beneficial impact in terms of current flow stability at temperatures above 200 °C, compared to two component layers with the same imine as an additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA