Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 62-78.e20, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38096822

RESUMO

The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we discover human- and rodent-associated parabasalid protists, revealing substantial diversity and prevalence in nonindustrialized human populations. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in excretion of the metabolite succinate, which results in distinct small intestinal immune responses. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different Tritrichomonas species prefer dietary polysaccharides or mucus glycans. These polysaccharide preferences drive trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health.


Assuntos
Microbioma Gastrointestinal , Parabasalídeos , Polissacarídeos , Animais , Humanos , Camundongos , Fibras na Dieta , Intestino Delgado/metabolismo , Polissacarídeos/metabolismo , Parabasalídeos/metabolismo , Carboidratos da Dieta/metabolismo , Biodiversidade
2.
mBio ; : e0227323, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962346

RESUMO

IMPORTANCE: Environmental factors like climate change and captive breeding can impact the gut microbiota and host health. Therefore, conservation efforts for threatened species may benefit from understanding how these factors influence animal microbiomes. Parabasalid protists are members of the mammalian microbiota that can modulate the immune system and impact susceptibility to infections. However, little is known about parabasalids in reptiles. Here, we profile reptile-associated parabasalids in wild and captive reptiles and find that captivity has minimal impact on parabasalid prevalence or diversity. However, because reptiles are cold-blooded (ectothermic), their microbiotas experience wider temperature fluctuation than microbes in warm-blooded animals. To investigate whether extreme weather patterns affect parabasalid-host interactions, we analyzed the gene expression in reptile-associated parabasalids and found that temperature differences significantly alter genes associated with host health. These results expand our understanding of parabasalids in this vulnerable vertebrate group and highlight important factors to be taken into consideration for conservation efforts.

3.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292851

RESUMO

Parabasalid protists recently emerged as keystone members of the mammalian microbiota with important effects on their host's health. However, the prevalence and diversity of parabasalids in wild reptiles and the consequences of captivity and other environmental factors on these symbiotic protists are unknown. Reptiles are ectothermic, and their microbiomes are subject to temperature fluctuations, such as those driven by climate change. Thus, conservation efforts for threatened reptile species may benefit from understanding how shifts in temperature and captive breeding influence the microbiota, including parabasalids, to impact host fitness and disease susceptibility. Here, we surveyed intestinal parabasalids in a cohort of wild reptiles across three continents and compared these to captive animals. Reptiles harbor surprisingly few species of parabasalids compared to mammals, but these protists exhibited a flexible host-range, suggesting specific adaptations to reptilian social structures and microbiota transmission. Furthermore, reptile-associated parabasalids are adapted to wide temperature ranges, although colder temperatures significantly altered the protist transcriptomes, with increased expression of genes associated with detrimental interactions with the host. Our findings establish that parabasalids are widely distributed in the microbiota of wild and captive reptiles and highlight how these protists respond to temperature swings encountered in their ectothermic hosts.

4.
Parasite Immunol ; 45(6): e12981, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37038837

RESUMO

Schistosomiasis affects nearly 240 million people in predominately low- and middle-income countries and ranks second in the number of cases and socio-economic burden among all parasitic diseases. Despite the enormous burden posed by schistosomes, our understanding of how schistosomiasis impacts infected human tissues remains limited. Intestinal schistosomiasis in animal models leads to goblet cell hyperplasia, likely increasing mucus production and reflecting an intestinal type 2 immune response. However, it is unknown whether these same changes occur in schistosome-infected humans. Using immunofluorescence and light microscopy, we compared the abundance and morphology of goblet cells in patients diagnosed with schistosomiasis to uninfected controls. The mucin-containing vesicles in goblet cells from schistosome-infected patients were significantly larger (hypertrophic) than uninfected individuals, although goblet cell hyperplasia was absent in chronic human schistosomiasis. In addition, we examined tuft cells in the large intestinal epithelium of control and schistosome-infected patients. Tuft cell numbers expand during helminth infection in mice, but these cells have not been characterized in human parasite infections. We found no evidence of tuft cell hyperplasia during human schistosome infection. Thus, our study provides novel insight into schistosome-associated changes to the intestinal epithelium in humans, suggesting an increase in mucus production by large intestinal goblet cells but relatively minor effects on tuft cell numbers.


Assuntos
Esquistossomose , Humanos , Animais , Camundongos , Hiperplasia/metabolismo , Hiperplasia/patologia , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Mucinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA