Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Plants ; 10(3): 412-422, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38409292

RESUMO

The formation of a flat and thin leaf presents a developmentally challenging problem, requiring intricate regulation of adaxial-abaxial (top-bottom) polarity. The patterning principles controlling the spatial arrangement of these domains during organ growth have remained unclear. Here we show that this regulation in Arabidopsis thaliana is achieved by an organ-autonomous Turing reaction-diffusion system centred on mobile small RNAs. The data illustrate how Turing dynamics transiently instructed by prepatterned information is sufficient to self-sustain properly oriented polarity in a dynamic, growing organ, presenting intriguing parallels to left-right patterning in the vertebrate embryo. Computational modelling demonstrates that this self-organizing system continuously adapts to coordinate the robust planar polarity of a flat leaf while affording flexibility to generate the tissue patterns of evolutionarily diverse organ shapes. Our findings identify a small-RNA-based Turing network as a dynamic regulator of organ polarity that accounts for leaf shape diversity at the level of the individual organ, plant or species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo
2.
Nat Plants ; 8(3): 269-280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35318449

RESUMO

Developmental boundaries play an important role in coordinating the growth and patterning of lateral organs. In plants, specification of dorsiventrality is critical to leaf morphogenesis. Despite its central importance, the mechanism by which leaf primordia acquire adaxial versus abaxial cell fates to establish dorsiventrality remains a topic of much debate. Here, by combining time-lapse confocal imaging, cell lineage tracing and molecular genetic analyses, we demonstrate that a stable boundary between adaxial and abaxial cell fates is specified several plastochrons before primordium emergence when high auxin levels accumulate on a meristem prepattern formed by the AS2 and KAN1 transcription factors. This occurrence triggers a transient induction of ARF3 and an auxin transcriptional response in AS2-marked progenitors that distinguishes adaxial from abaxial identity. As the primordium emerges, dynamic shifts in auxin distribution and auxin-related gene expression gradually resolve this initial polarity into the stable regulatory network known to maintain adaxial-abaxial polarity within the developing organ. Our data show that spatial information from an AS2-KAN1 meristem prepattern governs the conversion of a uniform auxin input into an ARF-dependent binary auxin response output to specify adaxial-abaxial polarity. Auxin thus serves as a single morphogenic signal that orchestrates distinct, spatially separated responses to coordinate the positioning and emergence of a new organ with its patterning.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA