Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 3(1): 259, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444859

RESUMO

Lung macrophages mature after birth, placing newborn infants, particularly those born preterm, within a unique window of susceptibility to disease. We hypothesized that in preterm infants, lung macrophage immaturity contributes to the development of bronchopulmonary dysplasia (BPD), the most common serious complication of prematurity. By measuring changes in lung macrophage gene expression in preterm patients at risk of BPD, we show here that patients eventually developing BPD had higher inflammatory mediator expression even on the first day of life. Surprisingly, the ex vivo response to LPS was similar across all samples. Our analysis did however uncover macrophage signature genes whose expression increased in the first week of life specifically in patients resilient to disease. We propose that these changes describe the dynamics of human lung macrophage differentiation. Our study therefore provides new mechanistic insight into both neonatal lung disease and human developmental immunology.


Assuntos
Biomarcadores/análise , Displasia Broncopulmonar/patologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Macrófagos/imunologia , Pneumonia/patologia , Transcriptoma , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/imunologia , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Macrófagos/metabolismo , Macrófagos/patologia , Pneumonia/genética , Pneumonia/imunologia
2.
Cell Mol Gastroenterol Hepatol ; 6(2): 181-198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003124

RESUMO

BACKGROUND & AIMS: Oncogenic mutations in KRAS, coupled with inactivation of p53, CDKN2A/p16INK4A, and SMAD4, drive progression of pancreatic ductal adenocarcinoma (PDA). Overexpression of MYC and deregulation of retinoblastoma (RB) further promote cell proliferation and make identifying a means to therapeutically alter cell-cycle control pathways in PDA a significant challenge. We previously showed that the basic helix-loop-helix transcription factor E47 induced stable growth arrest in PDA cells in vitro and in vivo. Here, we identified molecular mechanisms that underlie E47-induced growth arrest in low-passage, patient-derived primary and established PDA cell lines. METHODS: RNA sequencing was used to profile E47-dependent transcriptomes in 5 PDA cell lines. Gene Ontology analysis identified cell-cycle control as the most altered pathway. Small interfering RNA/short hairpin RNA knockdown, small-molecule inhibitors, and viral expression were used to examine the function of E47-dependent genes in cell-cycle arrest. Cell morphology, expression of molecular markers, and senescence-associated ß-galactosidase activity assays identified cellular senescence. RESULTS: E47 uniformly inhibited PDA cell-cycle progression by decreasing expression of MYC, increasing the level of CDKN1B/p27KIP1, and restoring RB tumor-suppressor function. The molecular mechanisms by which E47 elicited these changes included altering both RNA transcript levels and protein stability of MYC and CDKN1B/p27KIP1. At the cellular level, E47 elicited a senescence-like phenotype characterized by increased senescence-associated ß-galactosidase activity and altered expression of senescence markers. CONCLUSIONS: E47 governs a highly conserved network of cell-cycle control genes, including MYC, CDKN1B/p27KIP1, and RB, which can induce a senescence-like program in PDA cells that lack CDKN2A/p16INK4A and wild-type p53. RNA sequencing data are available at the National Center for Biotechnology Information GEO at https://www.ncbi.nlm.nih.gov/geo/; accession number: GSE100327.

3.
Oncotarget ; 8(32): 53154-53167, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881801

RESUMO

The average survival for patients with Pancreatic Ductal Adenocarcinoma (PDA) is merely 6 months, underscoring the need for new therapeutic approaches. During PDA progression, pancreatic acinar cells lose activity of the ClassI/II bHLH factors that regulate quiescence. We previously found that promoting transcriptional activity of the Class I bHLH factor E47 in highly aggressive PDA cells induced stable growth arrest in vitro and in vivo. To translate these findings for clinical utility, we developed a high throughput screening platform to identify small molecule inducers of Class I/II bHLH activity. A screen of 4,375 known drugs identified 70 bHLH activators. Prominent among the hits were members of the statin class of HMG-CoA reductase inhibitors, cholesterol lowering drugs that are also being evaluated in cancer. Studies with pitavastatin in primary patient derived tumor cells and established PDA lines, revealed dose dependent growth inhibition. At the molecular level, pitavastatin induced expression of the cyclin dependent kinase (CDK) inhibitor p21 in a cholesterol independent manner, blocked repressive phosphorylation of the Retinoblastoma tumor suppressor protein at CDK targeted sites, and reduced expression of E2F target genes required for progression through the G1/S boundary. Together, the data provide new insight into mechanisms by which statins constrain proliferation in cancer and establish the effectiveness of a novel screening platform to identify small molecules of clinical relevance in pancreatic cancer.

4.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L861-L872, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28336813

RESUMO

In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2 Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme.


Assuntos
Feto/citologia , Imunidade Inata , Pulmão/embriologia , Mesoderma/citologia , Mesoderma/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Lipopolissacarídeos/farmacologia , Mesoderma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA