Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plants (Basel) ; 10(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34371671

RESUMO

The aim of this review is to summarize all the compounds identified and characterized from Euphorbia characias, along with the biological activities reported for this plant. Euphorbia is one of the greatest genera in the spurge family of Euphorbiaceae and includes different kinds of plants characterized by the presence of milky latex. Among them, the species Euphorbia characias L. is an evergreen perennial shrub widely distributed in Mediterranean countries. E. characias latex and extracts from different parts of the plant have been extensively studied, leading to the identification of several chemical components such as terpenoids, sterol hydrocarbons, saturated and unsaturated fatty acids, cerebrosides and phenolic and carboxylic acids. The biological properties range between antioxidant activities, antimicrobial, antiviral and pesticidal activities, wound-healing properties, anti-aging and hypoglycemic properties and inhibitory activities toward target enzymes related to different diseases, such as cholinesterases and xanthine oxidase. The information available in this review allows us to consider the plant E. characias as a potential source of compounds for biomedical research.

2.
J Enzyme Inhib Med Chem ; 36(1): 517-524, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33494628

RESUMO

Washingtonia filifera seeds have revealed to possess antioxidant properties, butyrylcholinesterase and xanthine oxidase inhibition activities. The literature has indicated a relationship between Alzheimer's disease (AD) and type-2 diabetes (T2D). Keeping this in mind, we have now evaluated the inhibitory properties of W. filifera seed extracts on α-amylase, α-glucosidase enzyme activity and the Islet Amyloid Polypeptide (IAPP) fibrils formation. Three extracts from seeds of W. filifera were evaluated for their enzyme inhibitory effect and IC50 values were calculated for all the extracts. The inhibition mode was investigated by Lineweaver-Burk plot analysis and the inhibition of IAPP aggregate formation was monitored. W. filifera methanol seed extract appears as the most potent inhibitor of α-amylase, α-glucosidase, and for the IAPP fibril formation. Current findings indicate new potential of this extract that could be used for the identification or development of novel potential agents for T2D and AD.


Assuntos
Arecaceae/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/química , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
3.
Plants (Basel) ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466576

RESUMO

The aim of this study was to test the inhibitory effect of fruit extracts from Washingtonia filifera on skin aging-related enzymes. The pulp extracts did not exert a significant enzyme inhibition while seed extracts from W. filifera exhibit anti-elastase, anti-collagenase, and anti-tyrosinase activities. Tyrosinase was mildly inhibited while a stronger effect was observed with respect to elastase and collagenase inhibition. Alcoholic extracts provided better results than aqueous extracts. Among them, methanol extracts showed the prominent enzyme inhibitory activities being IC50 value for elastase and collagenase comparable and even better than the reference compound. The inhibition mode of the most active extracts was investigated by Lineweaver-Burk plot analysis. Seed extracts from W. filifera were also investigated for their photo-protective effect by Mansur equation and the antioxidant activity of W. filifera extract was evaluated in oxidative-stressed cells. To evaluate the safety of the extract, the effect on cell viability of human keratinocytes cells was analyzed. Methanol extract presented the best photo-protective effect and exerted an antioxidant activity in a cellular system with no cytotoxic effect. The overall results demonstrate that W. filifera extracts are promising sources of bioactive compounds that could be used in cosmetic and pharmaceutical preparation.

4.
Int J Biol Macromol ; 169: 428-435, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347933

RESUMO

In this study, we have investigated a series of hydroxylated 2-phenylbenzofurans compounds for their inhibitory activity against α-amylase and α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes seem to have an important role as antidiabetic drugs. Diabetes mellitus is a wide-spread metabolic disease characterized by elevated levels of blood glucose. The most common is type 2 diabetes, which can lead to severe complications. Since the aggregates of islet amyloid polypeptide (IAPP) are common in diabetic patients, the effect of compounds to inhibit amyloid fibril formation was also determined. All the compounds assayed showed to be more active against α-glucosidase. Compound 16 showed the lowest IC50 value of the series, and it is found to be 167 times more active than acarbose, the reference compound. The enzymatic activity assays showed that compound 16 acts as a mixed-type inhibitor of α-glucosidase. Furthermore, compound 16 displayed effective inhibition of IAPP aggregation and it manifested no significant cytotoxicity. To predict the binding of compound 16 to IAPP and α-glucosidase protein complexes, molecular docking studies were performed. Altogether, our results support that the 2-phenylbenzofuran derivatives could represent a promising candidate for developing molecules able to modulate multiple targets involved in diabetes mellitus disorder.


Assuntos
Benzofuranos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Amilases/antagonistas & inibidores , Amiloide/química , Benzofuranos/química , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Humanos , Hidroxilação , Hipoglicemiantes/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Acoplamento Molecular , Estudos Prospectivos , alfa-Amilases/química , alfa-Glucosidases/metabolismo
5.
Acta Crystallogr D Struct Biol ; 76(Pt 9): 857-867, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876061

RESUMO

Little information is available concerning the structural features of nucleotide pyrophosphatase/phosphodiesterases (NPPs) of plant origin and the crystal structures of these proteins have not yet been reported. The aim of this study was to obtain insight into these aspects by carrying out a comparative analysis of the sequences of two different fragments of an NPP from the latex of the Mediterranean shrub Euphorbia characias (ELNPP) and by studying the low-resolution structure of the purified protein in solution by means of small-angle X-ray scattering. This is the first structure of a plant NPP in solution that has been reported to date. It is shown that the ELNPP sequence is highly conserved in many other plant species. Of note, the catalytic domains of these plant NPPs have the same highly conserved PDE-domain organization as mammalian NPPs. Moreover, ELNPP is a dimer in solution and this oligomerization state is likely to be common to other plant enzymes.


Assuntos
Euphorbia/enzimologia , Diester Fosfórico Hidrolases/química , Proteínas de Plantas/química , Pirofosfatases/química , Sequência de Aminoácidos , Domínio Catalítico , Látex/química , Homologia de Sequência de Aminoácidos
6.
Plant Physiol Biochem ; 143: 224-231, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31521050

RESUMO

A complex network of symbiotic events between plants and bacteria allows the biosphere to exploit the atmospheric reservoir of molecular nitrogen. In seeds, a series of presymbiotic steps are already identified during imbibition, while interactions between the host and its symbiont begin in the early stages of germination. In the present study, a detailed analysis of the substances' complex delivered by Cicer arietinum seeds during imbibition showed a relevant presence of proteins and amino acids, which, except for cysteine, occurred with the whole proteinogenic pool. The imbibing solution was found to provide essential probiotic properties able to sustain the growth of the specific chickpea symbiont Mesorhizobium ciceri. Moreover, the imbibing solution, behaving as a complete medium, was found to be critically important for the symbiont's attraction, a fact this that is strictly related to the presence of the amino acids glycine, serine, and threonine. Here, the presence of these amino acids is constantly supported by the presence of the enzymes serine hydroxymethyltransferase and formyltetrahydrofolate deformylase, which are both involved in their biosynthesis. The reported findings are discussed in the light of the pivotal role played by the imbibing solution in attracting and sustaining symbiosis between the host and its symbiont.


Assuntos
Cicer/microbiologia , Cicer/efeitos da radiação , Luz , Quimiotaxia/genética , Quimiotaxia/fisiologia , Cicer/metabolismo , Mesorhizobium/fisiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Simbiose/genética , Simbiose/fisiologia
7.
Molecules ; 24(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375003

RESUMO

Antibiotic resistance is one of the main public health concerns of this century. This resistance is also associated with oxidative stress, which could contribute to the selection of resistant bacterial strains. Bearing this in mind, and considering that flavonoid compounds are well known for displaying both activities, we investigated a series of hydroxy-3-arylcoumarins with structural features of flavonoids for their antibacterial activity against different bacterial strains. Active compounds showed selectivity against the studied Gram-positive bacteria compared to Gram-negative bacteria. 5,7-Dihydroxy-3-phenylcoumarin (compound 8) displayed the best antibacterial activity against Staphylococcus aureus and Bacillus cereus with minimum inhibitory concentrations (MICs) of 11 g/mL, followed by Staphylococcus aureus (MRSA strain) and Listeria monocytogenes with MICs of 22 and 44 g/mL, respectively. Moreover, molecular docking studies performed on the most active compounds against Staphylococcus aureus tyrosyl-tRNA synthetase and topoisomerase II DNA gyrase revealed the potential binding mode of the ligands to the site of the appropriate targets. Preliminary structure-activity relationship studies showed that the antibacterial activity can be modulated by the presence of the 3-phenyl ring and by the position of the hydroxyl groups at the coumarin scaffold.


Assuntos
Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Cumarínicos/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/patogenicidade , Infecções Bacterianas/microbiologia , Cumarínicos/farmacologia , DNA Girase/química , DNA Girase/genética , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/patogenicidade , Simulação de Acoplamento Molecular , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
8.
RSC Adv ; 9(37): 21278-21287, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521327

RESUMO

The chemical composition and biological properties of palm Washingtonia filifera (Lindl.) H. Wendl. seeds are seldom studied. Bearing this in mind, the seeds of W. filifera fruits were analysed for their fatty acid and phenolic composition and their antioxidant activity in addition to their cholinesterase and xanthine oxidase inhibitory activities. Seed extracts were revealed as a good source of phenolics with significant antioxidant activity. The phenolic profile mainly consisted of proanthocyanidins or procyanidin dimers B1-B4 among the major compounds. The highest butyrylcholinesterase inhibitory activity was found in the ethanolic extracts of seeds, with IC50 values of 13.73 ± 1.31 µg mL-1. Seed alcoholic extracts also displayed interesting xanthine oxidase inhibitory activity, with IC50 values ranging between 75.2 ± 17.0 µg mL-1 and 95.8 ± 5.9 µg mL-1. Procyanidin B1, a major component in the extracts, could be an important contributor to that activity, as it was found to possess good xanthine oxidase inhibition capacity (IC50 value of 53.51 ± 6.03 µg mL-1). Docking studies were also performed to predict the binding sites of procyanidins B1 and B2 within the xanthine oxidase structure. In all, W. filifera seeds appear as a promising natural source for the extraction of bioactive compounds with antioxidant and butyrylcholinesterase as well as xanthine oxidase inhibitory potential.

9.
Bioorg Chem ; 84: 302-308, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529848

RESUMO

We have designed, synthesized and evaluated a series of hydroxylated 2-phenylbenzofuran derivatives as potential cholinesterase inhibitors. Starting from a series of 2-phenylbenzofurans previously published, in this paper we present a complete synthesis and the influence on the activity of one or two hydroxyl groups located in meta or in meta and para positions respectively of the 2-phenyl ring and highlight the importance of position of hydroxyl groups. Moreover, simultaneous introduction of halogen at position 7 of the benzofuran scaffold resulted in an improved inhibitory activity against the enzyme. To further provide molecular insight and to identify the most probable ligand-binding site of the protein, docking studies were performed for the top-ranked compounds. Docking results revealed conserved ligand-binding residues and supported the role of catalytic site residues in enzyme inhibition.


Assuntos
Acetilcolinesterase/metabolismo , Benzofuranos/química , Inibidores da Colinesterase/síntese química , Acetilcolinesterase/química , Benzofuranos/metabolismo , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
Food Sci Biotechnol ; 27(1): 139-146, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30263734

RESUMO

Sardinian honeys obtained from different floral sources (Arbutus, Asphodelus, Eucalyptus, Thistle, and Sulla) were evaluated for their ability to inhibit tyrosinase and xanthine oxidase enzymes and for their antioxidant activity. Physicochemical parameters, total phenolic, and flavonoids content were also determined. Honey from Arbutus flowers had the highest antioxidant activity followed by Eucalyptus and Thistle ones. These three honeys showed good tyrosinase and xanthine oxidase inhibition properties. Thus, these Sardinian honeys could have a great potential as antioxidant sources for pharmaceutical and cosmetic applications.

11.
Int J Biol Macromol ; 120(Pt A): 1286-1293, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30189275

RESUMO

Xanthine oxidase (XO) is an interesting target for the synergic treatment of several diseases. Coumarin scaffold plays an important role in the design of efficient and potent inhibitors. In the current work, twenty 3-arylcoumarins and eight 3-heteroarylcoumarins were evaluated for their ability to inhibit XO. Among all the candidates, 5,7-dihydroxy-3-(3'-hydroxyphenyl)coumarin (compound 20) proved to be the best inhibitor with an IC50 of 2.13 µM, being 7-fold better than the reference compound, allopurinol (IC50 = 14.75 µM). To deeply understand the potential of this compound, the inhibition mode was also evaluated. Compound 20 showed an uncompetitive profile of inhibition. Molecular docking studies were carried out to analyze the interaction of compound 20 with the studied enzyme. The binding mode involving residues different from the catalytic site of the binding pocket, is compatible to the observed uncompetitive inhibition. Compound 20 was not cytotoxic at its IC50 value, as demonstrated by the viability of 99.1% in 3 T3 cells. Furthermore, pharmacokinetics and physicochemical properties were also calculated, which corroborated with the potential of the studied compounds as promising XO inhibitors.


Assuntos
Cumarínicos/química , Inibidores Enzimáticos/química , Xantina Oxidase/antagonistas & inibidores , Alopurinol/química , Domínio Catalítico , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
12.
Biomed Res Int ; 2018: 1219367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003087

RESUMO

Extracts of aerial part of Euphorbia characias were examined to check potential inhibitors for three selected enzymes involved in several metabolic disorders. Water and ethanol extracts from leaves and flowers showed in vitro inhibitory activity toward α-amylase, α-glucosidase, and xanthine oxidase. IC50 values were calculated for all the extracts and the ethanolic extracts were found to exert the best effect. In particular, for the α-glucosidase activity, the extracts resulted to be 100-fold more active than the standard inhibitor. The inhibition mode was investigated by Lineweaver-Burk plot analysis. E. characias extracts display different inhibition behaviors toward the three enzymes acting as uncompetitive, noncompetitive, and mixed-type inhibitors. Moreover, ethanolic extracts of E. characias showed no cytotoxic activity and exhibited antioxidant capacity in a cellular model. The LC-DAD metabolic profile was also performed and it showed that leaves and flowers extracts contain high levels of quercetin derivatives. The results suggest that E. characias could be a promising source of natural inhibitors of the enzymes involved in carbohydrate uptake disorders and oxidative stress.


Assuntos
Inibidores Enzimáticos/farmacologia , Euphorbia , Extratos Vegetais/farmacologia , Carboidratos , Inibidores de Glicosídeo Hidrolases , Estresse Oxidativo , alfa-Amilases , alfa-Glucosidases
13.
Sci Rep ; 8(1): 4424, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535344

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder representing the leading cause of dementia and is affecting nearly 44 million people worldwide. AD is characterized by a progressive decline in acetylcholine levels in the cholinergic systems, which results in severe memory loss and cognitive impairments. Expression levels and activity of butyrylcholinesterase (BChE) enzyme has been noted to increase significantly in the late stages of AD, thus making it a viable drug target. A series of hydroxylated 2-phenylbenzofurans compounds were designed, synthesized and their inhibitory activities toward acetylcholinesterase (AChE) and BChE enzymes were evaluated. Two compounds (15 and 17) displayed higher inhibitory activity towards BChE with IC50 values of 6.23 µM and 3.57 µM, and a good antioxidant activity with EC50 values 14.9 µM and 16.7 µM, respectively. The same compounds further exhibited selective inhibitory activity against BChE over AChE. Computational studies were used to compare protein-binding pockets and evaluate the interaction fingerprints of the compound. Molecular simulations showed a conserved protein residue interaction network between the compounds, resulting in similar interaction energy values. Thus, combination of biochemical and computational approaches could represent rational guidelines for further structural modification of these hydroxy-benzofuran derivatives as future drugs for treatment of AD.


Assuntos
Acetilcolinesterase/metabolismo , Benzofuranos/síntese química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Benzofuranos/química , Benzofuranos/farmacologia , Sítios de Ligação , Butirilcolinesterase/química , Linhagem Celular , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Regulação para Baixo , Desenho de Fármacos , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular
14.
Biotechnol Appl Biochem ; 65(1): 81-88, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28940598

RESUMO

This minireview focuses on a plant copper/2,4,5-trihydroxyphenyl alanine quinone amine oxidase isolated from the latex of the shrub Euphorbia characias (ELAO). This enzyme has been investigated in terms of both molecular structure and kinetic mechanism. The characterization of this enzyme allowed us to identify specific amino acids and domains that play a key role in modulating substrate access into the active site not only for ELAO but also for other plant and mammalian amine oxidases. As mammalian amine oxidases are implicated in several physiological and pathological conditions, the deep structural characterization of their active site accession mechanisms could be the starting point for the development of enzyme modulators with high therapeutic potential. Thus, this paper gives structural/functional insights that open new perspectives in the research about the whole amine oxidase family.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Euphorbia/enzimologia , Amina Oxidase (contendo Cobre)/isolamento & purificação , Cinética , Estrutura Molecular
15.
Bioorg Med Chem ; 25(5): 1687-1695, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189394

RESUMO

Melanogenesis is a physiological pathway for the formation of melanin. Tyrosinase catalyzes the first step of this process and down-regulation of its activity is responsible for the inhibition of melanogenesis. The search for molecules capable of controlling hyperpigmentation is a trend topic in health and cosmetics. A series of heteroarylcoumarins have been synthesized and evaluated. Compounds 4 and 8 exhibited higher tyrosinase inhibitory activities (IC50=0.15 and 0.38µM, respectively), than the reference compound, kojic acid (IC50=17.9µM). Compound 4 acts as competitive, while compound 8 as uncompetitive inhibitor of mushroom tyrosinase. Furthermore, compounds 2 and 8 inhibited tyrosinase activity and melanin production in B16F10 cells. In addition, compounds 2-4 and 8 proved to have an interesting antioxidant profile in both ABTS and DPPH radicals scavenging assays. Docking experiments were carried out in order to study the interactions between these heteroarylcoumarins and mushroom tyrosinase.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Melaninas/antagonistas & inibidores , Monofenol Mono-Oxigenase/antagonistas & inibidores , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Espectrometria de Massas , Melaninas/biossíntese , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética
16.
BMC Complement Altern Med ; 16(1): 453, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829416

RESUMO

BACKGROUND: Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants. In the traditional medicine plants of the genus Asphodelus are used to treat skin disorders such as ectodermal parasites, psoriasis, microbial infection and for lightening freckles. In order to find novel skin depigmenting agents, the present work was carry out to evaluate antioxidant activity and tyrosinase inhibitory potential of leaves, flowers and tubers extracts of A. microcarpus. The phytochemical composition of the active extract was also evaluated. METHODS: Three different extracts (water, methanol and ethanol) from leaves, flowers and tubers of A. microcarpus were evaluated for their inhibitory effect on tyrosinase activity using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. Inhibition of cellular tyrosinase activity and melanin production was also investigated in melanoma B16F10 cells. Antioxidant activity, total phenolic and flavonoids contents were determined using standard in vitro methods. HPLC-DAD-MS was used to identify phenolic profile of the active extract. RESULTS: The results showed that all extracts have a direct inhibitory anti-tyrosinase activity, with ethanolic extract from flowers (FEE) exhibiting the stronger effect. Kinetic analysis revealed that FEE acts as an uncompetitive inhibitor with a Ki value of 0.19 mg/mL. The same effect was observed in murine melanoma B16F10 cells. Cellular tyrosinase activity as well as melanin content were reduced in FEE-treated cells. The results were comparable to that of the standard tyrosinase inhibitor (kojic acid). Furthermore, the same extract showed the highest antioxidant activity and an elevated levels of total phenolics and flavonoid content. Eleven phenolic components were identified as chlorogenic acid, luteolin derivates, naringenin and apigenin. CONCLUSIONS: Our findings showed that FEE from A. microcarpus inhibits tyrosinase and exerted antimelanogenesis effect in B16F10 cells. This extract also showed the highest scavenging activity, which could be mainly attributed to its high levels of total polyphenols and flavonoids. These results suggest that A. microcarpus has a great potential as sources of bioactive compounds which could be used as depigmenting agents in skin disorders.


Assuntos
Antioxidantes/química , Liliaceae/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/química , Preparações Clareadoras de Pele/química , Animais , Linhagem Celular Tumoral , Cinética , Melaninas/biossíntese , Camundongos , Monofenol Mono-Oxigenase/análise , Folhas de Planta/química
17.
Biomed Res Int ; 2016: 1538703, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27314007

RESUMO

The aim of the present study was to evaluate antioxidant, antimicrobial, anti-HIV, and cholinesterase inhibitory activities of aqueous and alcoholic extracts from leaves, stems, and flowers of Euphorbia characias. The extracts showed a high antioxidant activity and were a good source of total polyphenols and flavonoids. Ethanolic extracts from leaves and flowers displayed the highest inhibitory activity against acetylcholinesterase and butyrylcholinesterase, showing potential properties against Alzheimer's disease. Antimicrobial assay showed that leaves and flowers extracts were active against all Gram-positive bacteria tested. The ethanolic leaves extract appeared to have the strongest antibacterial activity against Bacillus cereus with MIC value of 312.5 µg/mL followed by Listeria monocytogenes and Staphylococcus aureus that also exhibited good sensitivity with MIC values of 1250 µg/mL. Moreover, all the extracts possessed anti-HIV activity. The ethanolic flower extract was the most potent inhibitor of HIV-1 RT DNA polymerase RNA-dependent and Ribonuclease H with IC50 values of 0.26 and 0.33 µg/mL, respectively. The LC-DAD metabolic profile showed that ethanolic leaves extract contains high levels of quercetin derivatives. This study suggests that Euphorbia characias extracts represent a good source of natural bioactive compounds which could be useful for pharmaceutical application as well as in food system for the prevention of the growth of food-borne bacteria and to extend the shelf-life of processed foods.


Assuntos
Antibacterianos/administração & dosagem , Fármacos Anti-HIV/síntese química , Antioxidantes/síntese química , Inibidores da Colinesterase/síntese química , Euphorbia/química , Componentes Aéreos da Planta/química , Antibacterianos/síntese química , Fármacos Anti-HIV/administração & dosagem , Antioxidantes/administração & dosagem , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , HIV/efeitos dos fármacos , Extratos Vegetais/administração & dosagem
18.
Bioorg Med Chem Lett ; 26(9): 2308-13, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26995529

RESUMO

A series of 2-phenylbenzofurans compounds was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. Among these benzofuran derivatives, compound 16 exhibited the highest BChE inhibition with an IC50 value of 30.3 µM. This compound was found to be a mixed-type inhibitor as determined by kinetic analysis. Moreover, molecular dynamics simulations revealed that compound 16 binds to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE and it displayed the best interaction energy value, in agreement with our experimental data.


Assuntos
Benzofuranos/síntese química , Benzofuranos/farmacologia , Butirilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Benzofuranos/química , Inibidores da Colinesterase/química , Modelos Moleculares
19.
PeerJ ; 3: e1305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500815

RESUMO

Tyrosinase is a well-known key enzyme in melanin biosynthesis and its inhibitors have become increasingly important because of their potential use as hypopigmenting agents. In the present study, the anti-melanogenic effect of aqueous and ethanolic extracts from Euphorbia characias leaves, stems, and flowers in cell-free and cellular systems was examined. All the extracts showed inhibitory effects against mushroom tyrosinase with leaf extracts exhibiting the lowest IC50 values of 24 and 97 µg/mL for aqueous and ethanolic extracts respectively. Enzyme kinetic analysis indicated that leaf aqueous extract acts as a mixed type inhibitor, while ethanolic extract shows a competitive inhibition effect on mushroom tyrosinase using L-DOPA as substrate. In addition, the inhibitory effect of leaf extracts on tyrosinase activity and melanin production was examined in murine melanoma B16F10 cells. Cellular tyrosinase activity as well as levels of melanin synthesis are reduced in a dose-dependent manner by extracts in cells treated with α-melanocyte stimulating hormone (α-MSH). The effects are comparable, and sometimes even better, than that of kojic acid, a well known tyrosinase inhibitor used for reference. All these results suggest that E. characias could be a great source of the natural inhibitors from tyrosinase and has the potential to be used as a whitening agent in therapeutic fields.

20.
Protein Expr Purif ; 116: 152-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318237

RESUMO

This paper deals with the purification of a class III endochitinase from Euphorbia characias latex. Described purification method includes an effective novel separation step using magnetic chitin particles. Application of magnetic affinity adsorbent noticeably simplifies and shortens the purification procedure. This step and the subsequently DEAE-cellulose chromatography enable to obtain the chitinase in homogeneous form. One protein band is present on PAGE in non-denaturing conditions and SDS-PAGE profile reveals a unique protein band of 36.5 ± 2 kDa. The optimal chitinase activity is observed at 50 °C, pH 5.0. E. characias latex chitinase is able to hydrolyze colloidal chitin giving, as reaction products, N-acetyl-D-glucosamine, chitobiose and chitotriose. Moreover, we observed that calcium and magnesium ions enhance chitinase activity. Finally, we cloned the cDNA encoding the E. characias latex chitinase. The partial cDNA nucleotide sequence contains 762 bp, and the deduced amino acid sequence (254 amino acids) is homologous to the sequence of several plant class III endochitinases.


Assuntos
Quitina/metabolismo , Quitinases/química , Quitinases/metabolismo , Euphorbia/enzimologia , Sequência de Aminoácidos , Quitinases/isolamento & purificação , Cromatografia DEAE-Celulose , Eletroforese em Gel de Poliacrilamida , Euphorbia/química , Hidrólise , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA