Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687201

RESUMO

In this study, a novel electrochemical assay for determining 17-ß-estradiol (E2) was proposed. The approach involves modifying a glassy carbon electrode (GCE) with a nanocomposite consisting of α-Fe2O3 nanoparticles supported on carbon nanotubes (CNTs)-denoted as α-Fe2O3-CNT/GCE. The synthesis of the α-Fe2O3-CNT nanocomposite was achieved through a simple and cost-effective hydrothermal process. Morphological and chemical characterization were conducted using scanning electron microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The presence of the α-Fe2O3-CNT film on the GCE surface resulted in an enhanced electrochemical response to E2, preventing electrode surface fouling and mitigating the decrease in peak current intensity during E2 oxidation. These outcomes substantiate the rationale behind the GCE modification. After the optimization of experimental conditions, E2 was determined by the square wave voltammetry technique using 0.1 mol L-1 KCl solution (pH = 7.0) with 20% ethanol as a supporting electrolyte. A linear concentration range of 5.0-100.0 nmol L-1 and a low limit of detection of 4.4 nmol L-1 were obtained. The electroanalytical method using α-Fe2O3-CNT/GCE was applied for E2 determination in pharmaceutical, lake water, and synthetic urine samples. The obtained results were attested by recovery tests and by high-performance liquid chromatography as a comparative technique at a 95% confidence level. Thus, the developed electrochemical sensor is simple and fast to obtain, presents high accuracy, and is viable for determining E2 in routine analysis.

2.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500705

RESUMO

An electrochemical sensor for simultaneous determination of Benserazide (BEZ) and levodopa (L-dopa) was successfully developed using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotube and nitrogen-doped titanium dioxide nanoparticles (GCE/MWCNT/N-TiO2). Cyclic voltammetry and square wave voltammetry were employed to investigate the electrochemical behavior of different working electrodes and analytes. In comparison with unmodified GCE, the modified electrode exhibited better electrocatalytic activity towards BEZ and L-dopa and was efficient in providing a satisfactory separation for oxidation peaks, with a potential difference of 140 mV clearly allows the simultaneous determination of these compounds. Under the optimized conditions, linear ranges of 2.0-20.0 and 2.0-70.0 µmol L-1 were obtained for BEZ and L-dopa, respectively, with a limit of detection of 1.6 µmol L-1 for BEZ and 2.0 µmol L-1 for L-dopa. The method was applied in simultaneous determination of the analytes in pharmaceutical samples, and the accuracy was attested by comparison with HPLC-DAD as the reference method, with a relative error lower than 4.0%.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Levodopa , Benserazida , Eletrodos , Oxirredução , Técnicas Eletroquímicas/métodos
3.
Molecules ; 27(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234946

RESUMO

This study reports a facile approach for constructing low-cost and remarkable electroactivity iron vanadate (Fe-V-O) semiconductor material to be used as a photoelectrochemical sensor for dopamine detection. The structure and morphology of the iron vanadate obtained by the Successive Ionic Adsorption and Reaction process were critically characterized, and the photoelectrochemical characterization showed a high photoelectroactivity of the photoanode in visible light irradiation. Under best conditions, dopamine was detected by chronoamperometry at +0.35 V vs. Ag/AgCl, achieving two linear response ranges (between 1.21 and 30.32 µmol L-1, and between 30.32 and 72.77 µmol L-1). The limits of detection and quantification were 0.34 and 1.12 µmol L-1, respectively. Besides, the accuracy of the proposed electrode was assessed by determining dopamine in artificial cerebrospinal fluid, obtaining recovery values ranging from 98.7 to 102.4%. The selectivity was also evaluated by dopamine detection against several interferent species, demonstrating good precision and promising application for the proposed method. Furthermore, DFT-based electronic structure calculations were also conducted to help the interpretation. The dominant dopamine species were determined according to the experimental conditions, and their interaction with the iron vanadate photoanode was proposed. The improved light-induced DOP detection was likewise evaluated regarding the charge transfer process.


Assuntos
Técnicas Biossensoriais , Dopamina , Técnicas Biossensoriais/métodos , Dopamina/química , Técnicas Eletroquímicas/métodos , Eletrodos , Ferro , Luz , Limite de Detecção , Vanadatos
4.
Analyst ; 139(7): 1762-8, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24496052

RESUMO

A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.

5.
Anal Chem ; 82(20): 8658-63, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20857934

RESUMO

A method for simultaneous determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food was developed that uses multiple pulse amperometry (MPA) with flow injection analysis (FIA). Determination of these phenolic antioxidants was carried out with a cathodically pretreated boron-doped diamond electrode and an aqueous ethanolic (30% ethanol, v/v) 10 mmol L⁻¹ KNO3 solution (pH(cond) = 1.5) as supporting electrolyte. A dual-potential waveform, at E(det1) = 850 mV/200 ms and E(det2) = 1150 mV/200 ms versus Ag/AgCl (3.0 mol L⁻¹ KCl), was employed. The use of E(det1) or E(det2) caused the oxidation of BHA or of BHA and BHT, respectively; hence, concentration subtraction could be used to determine both species. The respective analytical curves presented good linearity in the investigated concentration range (0.050-3.0 µmol L⁻¹ for BHA and 0.70-70 µmol L⁻¹ for BHT), and the detection limits were 0.030 µmol L⁻¹ for BHA and 0.40 µmol L⁻¹ for BHT. The proposed method, which is simple, quick, and presents good precision and accuracy, was successfully applied in the simultaneous determination of BHA and BHT in commercial mayonnaise samples, with results similar to those obtained by HPLC, at a 95% confidence level.


Assuntos
Antioxidantes/análise , Boro/química , Hidroxianisol Butilado/análise , Hidroxitolueno Butilado/análise , Diamante/química , Análise de Injeção de Fluxo/métodos , Hidroxianisol Butilado/química , Hidroxitolueno Butilado/química , Eletrodos , Análise de Alimentos , Estrutura Molecular
6.
Talanta ; 81(4-5): 1418-24, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20441917

RESUMO

The independent determination of two beta-blocker agents, namely propranolol (PROP) and atenolol (ATN), in pharmaceutical formulations using square-wave voltammetry and a cathodically pretreated boron-doped diamond electrode is described. These electroanalytical determinations of propranolol or atenolol were carried out in 0.1molL(-1) H(2)SO(4) or 0.5molL(-1) NaNO(3) (pH 1.0, adjusted with concentrated HNO(3)), respectively. Excellent linear calibration curves, ranging from 0.20 to 9.0micromolL(-1) for PROP and from 2.0 to 41micromolL(-1) for ATN, with detection limits of 0.18 and 0.93micromolL(-1), respectively, were obtained. The obtained recoveries range from 93.9% to 105.0%, for PROP, and from 92.5% to 106.0%, for ATN. The proposed method was successfully applied in the determination of both beta-blockers in several pharmaceutical formulations (tablets), with results in close agreement at a 95% confidence level with those obtained using official spectrophotometric methods.


Assuntos
Atenolol/química , Boro/química , Técnicas de Química Analítica , Diamante/química , Preparações Farmacêuticas/análise , Propranolol/química , Antagonistas Adrenérgicos beta/análise , Química Farmacêutica/métodos , Eletroquímica/métodos , Eletrodos , Limite de Detecção , Modelos Químicos , Potenciometria , Comprimidos
7.
Talanta ; 78(3): 748-52, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19269423

RESUMO

A simple and highly selective electrochemical method was developed for the single or simultaneous determination of paracetamol (N-acetyl-p-aminophenol, acetaminophen) and caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) in aqueous media (acetate buffer, pH 4.5) on a boron-doped diamond (BDD) electrode using square wave voltammetry (SWV) or differential pulse voltammetry (DPV). Using DPV with the cathodically pre-treated BDD electrode, a separation of about 550 mV between the peak oxidation potentials of paracetamol and caffeine present in binary mixtures was obtained. The calibration curves for the simultaneous determination of paracetamol and caffeine showed an excellent linear response, ranging from 5.0 x 10(-7)mol L(-1) to 8.3 x 10(-5)mol L(-1) for both compounds. The detection limits for the simultaneous determination of paracetamol and caffeine were 4.9 x 10(-7)mol L(-1) and 3.5 x 10(-8)mol L(-1), respectively. The proposed method was successfully applied in the simultaneous determination of paracetamol and caffeine in several pharmaceutical formulations (tablets), with results similar to those obtained using a high-performance liquid chromatography method (at 95% confidence level).


Assuntos
Acetaminofen/análise , Cafeína/análise , Potenciometria/métodos , Boro , Calibragem , Diamante , Eletrodos , Potenciometria/instrumentação , Comprimidos/análise
8.
Talanta ; 76(3): 685-9, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18585340

RESUMO

A simple and highly selective electrochemical method was developed for the simultaneous determination of aspartame and cyclamate in dietary products at a boron-doped diamond (BDD) electrode. In square-wave voltammetric (SWV) measurements, the BDD electrode was able to separate the oxidation peak potentials of aspartame and cyclamate present in binary mixtures by about 400 mV. The detection limit for aspartame in the presence of 3.0x10(-4) mol L(-1) cyclamate was 4.7x10(-7) mol L(-1), and the detection limit for cyclamate in the presence of 1.0x10(-4) mol L(-1) aspartame was 4.2x10(-6) mol L(-1). When simultaneously changing the concentration of both aspartame and cyclamate in a 0.5 mol L(-1) sulfuric acid solution, the corresponding detection limits were 3.5x10(-7) and 4.5x10(-6) mol L(-1), respectively. The relative standard deviation (R.S.D.) obtained was 1.3% for the 1.0x10(-4) mol L(-1) aspartame solution (n=5) and 1.1% for the 3.0x10(-3) mol L(-1) cyclamate solution. The proposed method was successfully applied in the determination of aspartame in several dietary products with results similar to those obtained using an HPLC method at 95% confidence level.


Assuntos
Aspartame/análise , Ciclamatos/análise , Eletroquímica/métodos , Eletrodos/normas , Boro , Diamante , Eletroquímica/instrumentação , Eletroquímica/normas , Análise de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA