Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Res ; 214(Pt 1): 113762, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779617

RESUMO

BACKGROUND: Allergic rhinitis affects half a billion people globally, including a fifth of the Australian population. As the foremost outdoor allergen source, ambient grass pollen exposure is likely to be altered by climate change. The AusPollen Partnership aimed to standardize pollen monitoring and examine broad-scale biogeographical and meteorological factors influencing interannual variation in seasonality of grass pollen aerobiology in Australia. METHODS: Daily airborne grass and other pollen concentrations in four eastern Australian cities separated by over 1700 km, were simultaneously monitored using Hirst-style samplers following the Australian Interim Pollen and Spore Monitoring Standard and Protocols over four seasons from 2016 to 2020. The grass seasonal pollen integral was determined. Gridded rainfall, temperature, and satellite-derived grassland sources up to 100 km from the monitoring site were analysed. RESULTS: The complexity of grass pollen seasons was related to latitude with multiple major summer-autumn peaks in Brisbane, major spring and minor summer peaks in Sydney and Canberra, and single major spring peaks occurring in Melbourne. The subtropical site of Brisbane showed a higher proportion of grass out of total pollen than more temperate sites. The magnitude of the grass seasonal pollen integral was correlated with pasture greenness, rainfall and number of days over 30 °C, preceding and within the season, up to 100 km radii from monitoring sites. CONCLUSIONS: Interannual fluctuations in Australian grass pollen season magnitude are strongly influenced by regional biogeography and both pre- and in-season weather. This first continental scale, Southern Hemisphere standardized aerobiology dataset forms the basis to track shifts in pollen seasonality, biodiversity and impacts on allergic respiratory diseases.


Assuntos
Alérgenos , Pólen , Austrália , Humanos , Conceitos Meteorológicos , Poaceae , Estações do Ano
2.
Sci Total Environ ; 633: 441-451, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29579655

RESUMO

Allergic diseases, including respiratory conditions of allergic rhinitis (hay fever) and asthma, affect up to 500 million people worldwide. Grass pollen are one major source of aeroallergens globally. Pollen forecast methods are generally site-based and rely on empirical meteorological relationships and/or the use of labour-intensive pollen collection traps that are restricted to sparse sampling locations. The spatial and temporal dynamics of the grass pollen sources themselves, however, have received less attention. Here we utilised a consistent set of MODIS satellite measures of grass cover and seasonal greenness (EVI) over five contrasting urban environments, located in Northern (France) and Southern Hemispheres (Australia), to evaluate their utility for predicting airborne grass pollen concentrations. Strongly seasonal and pronounced pollinating periods, synchronous with satellite measures of grass cover greenness, were found at the higher latitude temperate sites in France (46-50° N. Lat.), with peak pollen activity lagging peak greenness, on average by 2-3weeks. In contrast, the Australian sites (34-38° S. Lat.) displayed pollinating periods that were less synchronous with satellite greenness measures as peak pollen concentrations lagged peak greenness by as much as 4 to 7weeks. The Australian sites exhibited much higher spatial and inter-annual variations compared to the French sites and at the Sydney site, broader and multiple peaks in both pollen concentrations and greenness data coincided with flowering of more diverse grasses including subtropical species. Utilising generalised additive models (GAMs) we found the satellite greenness data of grass cover areas explained 80-90% of airborne grass pollen concentrations across the three French sites (p<0.001) and accounted for 34 to 76% of grass pollen variations over the two sites in Australia (p<0.05). Our results demonstrate the potential of satellite sensing to augment forecast models of grass pollen aerobiology as a tool to reduce the health and socioeconomic burden of pollen-sensitive allergic diseases.

4.
Environ Health Perspect ; 125(8): 087002, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28885977

RESUMO

BACKGROUND: Crops grown under elevated atmospheric CO2 concentrations (eCO2) contain less protein. Crops particularly affected include rice and wheat, which are primary sources of dietary protein for many countries. OBJECTIVES: We aimed to estimate global and country-specific risks of protein deficiency attributable to anthropogenic CO2 emissions by 2050. METHODS: To model per capita protein intake in countries around the world under eCO2, we first established the effect size of eCO2 on the protein concentration of edible portions of crops by performing a meta-analysis of published literature. We then estimated per-country protein intake under current and anticipated future eCO2 using global food balance sheets (FBS). We modeled protein intake distributions within countries using Gini coefficients, and we estimated those at risk of deficiency from estimated average protein requirements (EAR) weighted by population age structure. RESULTS: Under eCO2, rice, wheat, barley, and potato protein contents decreased by 7.6%, 7.8%, 14.1%, and 6.4%, respectively. Consequently, 18 countries may lose >5% of their dietary protein, including India (5.3%). By 2050, assuming today's diets and levels of income inequality, an additional 1.6% or 148.4 million of the world's population may be placed at risk of protein deficiency because of eCO2. In India, an additional 53 million people may become at risk. CONCLUSIONS: Anthropogenic CO2 emissions threaten the adequacy of protein intake worldwide. Elevated atmospheric CO2 may widen the disparity in protein intake within countries, with plant-based diets being the most vulnerable. https://doi.org/10.1289/EHP41.


Assuntos
Poluição do Ar/análise , Atmosfera/química , Dióxido de Carbono/análise , Dieta/estatística & dados numéricos , Deficiência de Proteína/epidemiologia , Poluição do Ar/estatística & dados numéricos , Produtos Agrícolas , Humanos , Índia , Medição de Risco
5.
Aerobiologia (Bologna) ; 32(2): 289-302, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27069303

RESUMO

Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma.

6.
Sci Total Environ ; 534: 85-96, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25891684

RESUMO

Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Pólen , Rinite Alérgica Sazonal/epidemiologia , Australásia , Mudança Climática , Exposição Ambiental/análise , Humanos
7.
Aust N Z J Public Health ; 39(1): 51-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25648730

RESUMO

OBJECTIVE: Allergic rhinitis and allergic asthma are important chronic diseases posing serious public health issues in Australia with associated medical, economic, and societal burdens. Pollen are significant sources of clinically relevant outdoor aeroallergens, recognised as both a major trigger for, and cause of, allergic respiratory diseases. This study aimed to provide a national, and indeed international, perspective on the state of Australian pollen data using a large representative sample. METHODS: Atmospheric grass pollen concentration is examined over a number of years within the period 1995 to 2013 for Brisbane, Canberra, Darwin, Hobart, Melbourne, and Sydney, including determination of the 'clinical' grass pollen season and grass pollen peak. RESULTS: The results of this study describe, for the first time, a striking spatial and temporal variability in grass pollen seasons in Australia, with important implications for clinicians and public health professionals, and the Australian grass pollen-allergic community. CONCLUSIONS: These results demonstrate that static pollen calendars are of limited utility and in some cases misleading. This study also highlights significant deficiencies and limitations in the existing Australian pollen monitoring and data. IMPLICATIONS: Establishment of an Australian national pollen monitoring network would help facilitate advances in the clinical and public health management of the millions of Australians with asthma and allergic rhinitis.


Assuntos
Alérgenos/efeitos adversos , Exposição Ambiental , Poaceae/efeitos adversos , Pólen/efeitos adversos , Poluentes Atmosféricos/análise , Alérgenos/análise , Asma/etiologia , Austrália , Feminino , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Rinite Alérgica Sazonal/etiologia , Análise Espaço-Temporal
8.
PLoS One ; 9(5): e97925, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24874807

RESUMO

The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Pólen , Saúde da População Urbana , Poluentes Atmosféricos/efeitos adversos , Alérgenos , Austrália , Clima , Geografia , Humanos , Nova Zelândia , Pólen/efeitos adversos , Estações do Ano
9.
Ecohealth ; 9(4): 440-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23104689

RESUMO

Investigating the impact of climate change on human health requires the development of efficient tools that link patient symptoms with changing environmental variables. We developed an internet-based hay fever diary linked to simultaneously recorded pollen load and weather variables in Canberra, Australia over spring 2010. We recruited 42 hay fever sufferers to complete a simple online pollen diary daily over a period of 60 days. In conjunction, daily airborne pollen load was counted and meteorological data collected simultaneously. We focused on the relationships between temperature, rainfall, pollen count and rhinoconjunctivitis symptoms. Pollen load increased after a peak rainfall event until the end of the study. Compliance was high, averaging 79% of days per person. Nasal rhinoconjunctivitis symptoms increased in concert with increasing pollen load, and then remained high. Mucosal itching increased more gradually and strongly coincided with increased daily maximum temperature. Our study successfully demonstrated the feasibility of linking pollen load and climate variables to symptoms of rhinoconjunctivitis in the Australian community. However, a larger study would better explore the nature of associations between these variables. Similar online methods could be used to monitor a range of health responses to our changing environment.


Assuntos
Alérgenos/análise , Internet , Pólen , Rinite Alérgica Sazonal/epidemiologia , Tempo (Meteorologia) , Adulto , Austrália/epidemiologia , Mudança Climática , Meio Ambiente , Feminino , Humanos , Masculino , Chuva , Temperatura
10.
New Phytol ; 191(4): 996-1005, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21627664

RESUMO

Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, leaf- and sapwood-specific hydraulic conductivity and gas exchange characteristics of leaves. We found evidence that a trade-off between xylem transport capacity and safety from freeze-thaw-induced embolism affects photosynthetic activity in overwintering evergreens. The mean hydraulically weighted xylem vessel diameter and sapwood-specific conductivity correlated with susceptibility to freeze-thaw-induced embolism. There was also a strong correlation of hydraulic supply and demand across species; interspecific differences in stomatal conductance and CO(2) assimilation rates were correlated linearly with sapwood- and leaf-specific hydraulic conductivity. Xylem vessel anatomy mediated an apparent trade-off between resistance to freeze-thaw-induced embolism and hydraulic and photosynthetic capacity during the winter. These results point to a new role for xylem functional traits in determining the degree to which species can maintain photosynthetic carbon gain despite freezing events and cold winter temperatures.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Temperatura Alta , Fotossíntese , Xilema/fisiologia , Austrália , Transporte Biológico/fisiologia , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Estações do Ano , Xilema/anatomia & histologia
11.
Funct Plant Biol ; 38(1): 54-62, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32480862

RESUMO

How plastic is hydraulic anatomy with growth temperature, and how does this relate to photosynthesis? These interrelationships were studied in subantarctic Poa foliosa Hook. f. and alpine Poa hothamensis Vickery grown under 7/4°C and 12/9°C day/night temperatures, reflecting summer temperatures in their respective habitats. Conduit radii were smaller in P. foliosa than in P. hothamensis, consistent with greater avoidance of freeze/thaw-induced embolism. Despite its origins in an environment with relatively little temperature variation, P. foliosa exhibited greater plasticity in hydraulic anatomy than P. hothamensis, increasing the size and density of conduits when grown under the warmer temperature regime. Both species had similar anatomical capacities for water transport when grown at 12/9°C, but stomatal conductance was lower in P. foliosa than P. hothamensis, suggesting hydraulic limitations not explained by leaf vascular anatomy. However, greater photosynthetic capacity and foliar nitrogen contents enabled P. foliosa to achieve the same assimilation rate as P. hothamensis under the 12/9°C growth conditions. Our results showed that nitrogen plays a central role in maintaining assimilation rates when constrained either by enzymatic activity at low temperatures or by hydraulic limitations at high temperatures and evaporative demands. Interspecific differences in nitrogen and water use may influence how subantarctic and alpine vegetation responds to climate warming.

12.
New Phytol ; 175(2): 290-300, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17587377

RESUMO

The present study shows that the relative contributions of leaf area ratio (LAR) and net assimilation rate (NAR) to variation among species in relative growth rate (RGR) depend on growth temperature. We grew three subantarctic and three alpine Poa species at daytime temperatures of 7, 12 and 17 degrees C, and analysed interspecific and temperature-related variation in RGRs by growth analysis. Variation in NAR accounted for most of the interspecific differences in RGR at low growth temperature, whereas variation in both NAR and LAR contributed strongly to interspecific differences in RGR at high growth temperature. For most species, the increase in RGR from 7 to 12 degrees C was attributable to an increase in LAR, whereas the increase in RGR from 12 to 17 degrees C was attributable to an increase in NAR. There were no differences between native subantarctic and alpine species in the plasticity of growth responses to temperature. However, Poa annua, a species introduced to the subantarctic, showed much greater growth plasticity than other species. There was little difference among species in tolerance of high-temperature extremes.


Assuntos
Ecossistema , Temperatura Alta , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Poaceae/fisiologia , Adaptação Fisiológica , Poaceae/anatomia & histologia , Especificidade da Espécie
13.
Funct Plant Biol ; 31(9): 879-887, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32688956

RESUMO

Detailed knowledge of the sodium (Na) distribution within the tissues of highly salt-tolerant Australian native species could help in understanding the physiological adaptations of salt-tolerance or salt-sensitive plants. 23Na nuclear magnetic resonance (NMR) microimaging is presented as a tool to achieve this goal. Maps of the Na distribution in stem tissue were obtained with an in-plane resolution of approximately125 µm and a slice thickness of 4 mm. Simultaneously recorded high resolution 1H NMR images showing water distribution in the same slice with 31 µm in-plane resolution and 1 mm slice thickness, were used as an anatomical reference together with optical micrographs that were taken immediately after the NMR experiments were completed. To quantify the Na concentration, reference capillaries with known NaCl concentrations were located in the NMR probe together with the plant sample. Average concentration values calculated from signal intensities in the tissue and the capillaries were compared with concentration values obtained from atomic emission photometry and optical microscopy performed on digested stem sections harvested immediately after NMR experiments. Results showed that 23Na NMR microimaging has great potential for physiological studies of salt stress at the macroscopic level, and may become a unique tool for diagnosing salt tolerance and sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA