Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
mSystems ; 9(1): e0048423, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132670

RESUMO

Hypermutator lineages of Pseudomonas aeruginosa arise frequently during the years of airway infection experienced by patients with cystic fibrosis and bronchiectasis but are rare in the absence of chronic infection and structural lung disease. Since the onset of the COVID-19 pandemic, large numbers of patients have remained mechanically ventilated for extended periods of time. These patients are prone to acquire bacterial pathogens that persist for many weeks and have the opportunity to evolve within the pulmonary environment. However, little is known about what types of adaptations occur in these bacteria and whether these adaptations mimic those observed in chronic infections. We describe a COVID-19 patient with a secondary P. aeruginosa lung infection in whom the causative bacterium persisted for >50 days. Over the course of this infection, a hypermutator lineage of P. aeruginosa emerged and co-existed with a non-hypermutator lineage. Compared to the parental lineage, the hypermutator lineage evolved to be less cytotoxic and less virulent. Genomic analyses of the hypermutator lineage identified numerous mutations, including in the mismatch repair gene mutL and other genes frequently mutated in individuals with cystic fibrosis. Together, these findings demonstrate that hypermutator lineages can emerge when P. aeruginosa persists following acute infections such as ventilator-associated pneumonia and that these lineages have the potential to affect patient outcomes.IMPORTANCEPseudomonas aeruginosa may evolve to accumulate large numbers of mutations in the context of chronic infections such as those that occur in individuals with cystic fibrosis. However, these "hypermutator" lineages are rare following acute infections. Here, we describe a non-cystic fibrosis patient with COVID-19 pneumonia who remained mechanically ventilated for months. The patient became infected with a strain of P. aeruginosa that evolved to become a hypermutator. We demonstrate that hypermutation led to changes in cytotoxicity and virulence. These findings are important because they demonstrate that P. aeruginosa hypermutators can emerge following acute infections and that they have the potential to affect patient outcomes in this setting.


Assuntos
COVID-19 , Fibrose Cística , Infecções por Pseudomonas , Humanos , Fibrose Cística/complicações , Pseudomonas aeruginosa/genética , Respiração Artificial/efeitos adversos , Infecção Persistente , Pandemias , Infecções por Pseudomonas/complicações , Fenótipo , COVID-19/complicações
2.
Nat Commun ; 14(1): 7962, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042959

RESUMO

Klebsiella pneumoniae has been classified into two types, classical K. pneumoniae (cKP) and hypervirulent K. pneumoniae (hvKP). cKP isolates are highly diverse and important causes of nosocomial infections; they include globally disseminated antibiotic-resistant clones. hvKP isolates are sensitive to most antibiotics but are highly virulent, causing community-acquired infections in healthy individuals. The virulence phenotype of hvKP is associated with pathogenicity loci responsible for siderophore and hypermucoid capsule production. Recently, convergent strains of K. pneumoniae, which possess features of both cKP and hvKP, have emerged and are cause of much concern. Here, we screen the genomes of 2,608 multidrug-resistant K. pneumoniae isolates from the United States and identify 47 convergent isolates. We perform phenotypic and genomic characterization of 12 representative isolates. These 12 convergent isolates contain a variety of antimicrobial resistance plasmids and virulence plasmids. Most convergent isolates contain aerobactin biosynthesis genes and produce more siderophores than cKP isolates but not more capsule. Unexpectedly, only 1 of the 12 tested convergent isolates has a level of virulence consistent with hvKP isolates in a murine pneumonia model. These findings suggest that additional studies should be performed to clarify whether convergent strains are indeed more virulent than cKP in mouse and human infections.


Assuntos
Klebsiella pneumoniae , Fatores de Virulência , Humanos , Animais , Camundongos , Virulência/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia , Plasmídeos , Sideróforos
3.
Antimicrob Agents Chemother ; 67(12): e0072723, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37975660

RESUMO

It is unclear whether plasma is a reliable surrogate for target attainment in the epithelial lining fluid (ELF). The objective of this study was to characterize meropenem target attainment in plasma and ELF using prospective samples. The first 24-hour T>MIC was evaluated vs 1xMIC and 4xMIC targets at the patient (i.e., fixed MIC of 2 mg/L) and population [i.e., cumulative fraction of response (CFR) according to EUCAST MIC distributions] levels for both plasma and ELF. Among 65 patients receiving ≥24 hours of treatment, 40% of patients failed to achieve >50% T>4xMIC in plasma and ELF, and 30% of patients who achieved >50% T>4xMIC in plasma had <50% T>4xMIC in ELF. At 1xMIC and 4xMIC targets, 3% and 25% of patients with >95% T>MIC in plasma had <50% T>MIC in ELF, respectively. Those with a CRCL >115 mL/min were less likely to achieve >50%T>4xMIC in ELF (P < 0.025). In the population, CFR for Escherichia coli at 1xMIC and 4xMIC was >97%. For Pseudomonas aeruginosa, CFR was ≥90% in plasma and ranged 80%-85% in ELF at 1xMIC when a loading dose was applied. CFR was reduced in plasma (range: 75%-81%) and ELF (range: 44%-60%) in the absence of a loading dose at 1xMIC. At 4xMIC, CFR for P. aeruginosa was 60%-86% with a loading dose and 18%-62% without a loading dose. We found that plasma overestimated ELF target attainment inup to 30% of meropenem-treated patients, CRCL >115 mL/min decreased target attainment in ELF, and loading doses increased CFR in the population.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Meropeném/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Prospectivos , Infecções por Pseudomonas/tratamento farmacológico , Plasma , Testes de Sensibilidade Microbiana
4.
Front Cell Infect Microbiol ; 13: 1249505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900312

RESUMO

Introduction: Fluoroquinolones (FQs) are not commonly prescribed in children, yet the increasing incidence of multidrug-resistant (MDR) Enterobacterales (Ent) infections in this population often reveals FQ resistance. We sought to define the role of FQ resistance in the epidemiology of MDR Ent in children, with an overall goal to devise treatment and prevention strategies. Methods: A case-control study of children (0-18 years) at three Chicago hospitals was performed. Cases had infections by FQ-susceptible, ß-lactamase-producing (bla) Ent harboring a non- or low-level expression of PMFQR genes (PMFQS Ent). Controls had FQR infections due to bla Ent with expressed PMFQR genes (PMFQR Ent). We sought bla genes by PCR or DNA (BD Max Check-Points assay®) and PMFQR genes by PCR. We performed rep-PCR, MLST, and E. coli phylogenetic grouping. Whole genome sequencing was additionally performed on PMFQS Ent positive isolates. Demographics, comorbidities, and device, antibiotic, and healthcare exposures were evaluated. Predictors of infection were assessed. Results: Of 170 ß-lactamase-producing Ent isolates, 85 (50%) were FQS; 23 (27%) had PMFQR genes (PMFQS cases). Eighty-five (50%) were FQR; 53 (62%) had PMFQR genes (PMFQR controls). The median age for children with PMFQS Ent and PMFQR Ent was 4.3 and 6.2 years, respectively (p = NS). Of 23 PMFQS Ent, 56% were Klebsiella spp., and of 53 PMFQR Ent, 76% were E. coli. The most common bla and PMFQR genes detected in PMFQS Ent were bla SHV ESBL (44%) and oqxAB (57%), and the corresponding genes detected in PMFQR Ent were bla CTX-M-1-group ESBL (79%) and aac(6')-Ib-cr (83%). Whole genome sequencing of PMFQS Ent revealed the additional presence of mcr-9, a transferable polymyxin resistance gene, in 47% of isolates, along with multiple plasmids and mobile genetic elements propagating drug resistance. Multivariable regression analysis showed that children with PMFQS Ent infections were more likely to have hospital onset infection (OR 5.7, 95% CI 1.6-22) and isolates containing multiple bla genes (OR 3.8, 95% CI 1.1-14.5). The presence of invasive devices mediated the effects of healthcare setting in the final model. Differences in demographics, comorbidities, or antibiotic use were not found. Conclusions: Paradoxically, PMFQS Ent infections were often hospital onset and PMFQR Ent infections were community onset. PMFQS Ent commonly co-harbored multiple bla and PMFQR genes, and additional silent, yet transferrable antibiotic resistance genes such as mcr-9, affecting therapeutic options and suggesting the need to address infection prevention strategies to control spread. Control of PMFQS Ent infections will require validating community and healthcare-based sources and risk factors associated with acquisition.


Assuntos
Infecção Hospitalar , Escherichia coli , Criança , Humanos , Pré-Escolar , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Estudos de Casos e Controles , Filogenia , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Antibacterianos/farmacologia , beta-Lactamases/genética , beta-Lactamases/análise , Infecção Hospitalar/epidemiologia
5.
Microbiol Spectr ; 11(3): e0508722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191517

RESUMO

Pseudomonas aeruginosa frequently becomes resistant to aminoglycosides by the acquisition of aminoglycoside modifying enzyme (AME) genes and the occurrence of mutations in the mexZ, fusA1, parRS, and armZ genes. We examined resistance to aminoglycosides in a collection of 227 P. aeruginosa bloodstream isolates collected over 2 decades from a single United States academic medical institution. Resistance rates of tobramycin and amikacin were relatively stable over this time, while the resistance rates of gentamicin were somewhat more variable. For comparison, we examined resistance rates to piperacillin-tazobactam, cefepime, meropenem, ciprofloxacin, and colistin. Resistance rates to the first four antibiotics were also stable, although uniformly higher for ciprofloxacin. Colistin resistance rates were initially quite low, rose substantially, and then began to decrease at the end of the study. Clinically relevant AME genes were identified in 14% of isolates, and mutations predicted to cause resistance were relatively common in the mexZ and armZ genes. In a regression analysis, resistance to gentamicin was associated with the presence of at least one gentamicin-active AME gene and significant mutations in mexZ, parS, and fusA1. Resistance to tobramycin was associated with the presence of at least one tobramycin-active AME gene. An extensively drug-resistant strain, PS1871, was examined further and found to contain five AME genes, most of which were within clusters of antibiotic resistance genes embedded in transposable elements. These findings demonstrate the relative contributions of aminoglycoside resistance determinants to P. aeruginosa susceptibilities at a United States medical center. IMPORTANCE Pseudomonas aeruginosa is frequently resistant to multiple antibiotics, including aminoglycosides. The rates of resistance to aminoglycosides in bloodstream isolates collected over 2 decades at a United States hospital remained constant, suggesting that antibiotic stewardship programs may be effective in countering an increase in resistance. Mutations in the mexZ, fusA1, parR, pasS, and armZ genes were more common than acquisition of genes encoding aminoglycoside modifying enzymes. The whole-genome sequence of an extensively drug resistant isolate indicates that resistance mechanisms can accumulate in a single strain. Together, these results suggest that aminoglycoside resistance in P. aeruginosa remains problematic and confirm known resistance mechanisms that can be targeted for the development of novel therapeutics.


Assuntos
Infecções por Pseudomonas , Sepse , Humanos , Estados Unidos/epidemiologia , Pseudomonas aeruginosa , Aminoglicosídeos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Tobramicina/farmacologia , Gentamicinas/farmacologia , Infecções por Pseudomonas/epidemiologia , Ciprofloxacina/farmacologia , Genômica , Testes de Sensibilidade Microbiana
6.
BMC Infect Dis ; 22(1): 603, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799130

RESUMO

BACKGROUND: Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood. METHODS: We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database. RESULTS: Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1). CONCLUSIONS: Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates).


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Genômica , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Camundongos , Sepse/epidemiologia , Sepse/microbiologia , Estados Unidos/epidemiologia , beta-Lactamases/genética
7.
Pediatr Infect Dis J ; 40(1): 39-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021591

RESUMO

BACKGROUND: Extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales-(Ent) infections are increasing in pediatrics. Before CTX-M ESBL emerged, the most common infection-associated ESBL genes were TEM and SHV-type ESBLs. We sought to define the current epidemiology of Ent infections in children due to blaTEM and blaSHV (TEM-SHV-Ent). METHODS: A retrospective case-control analysis of children with TEM-SHV-Ent infections at 3 Chicago-area hospitals was performed. Cases had extended-spectrum-cephalosporin (ESC)-resistant infections due to blaTEM or blaSHV. DNA analysis assessed ß-lactamase (bla) genes, multilocus sequence types, and E. coli phylogenetic grouping. Controls had ESC-susceptible Ent infections, matched 3:1 to cases by age, source, and hospital. Clinical-epidemiologic infection predictors were assessed. RESULTS: Of 356 ESC-R-Ent isolates from children (median 4.3 years), 38 (10.7%) were positive solely for blaTEM-ESBL (26%) or blaSHV-ESBL genes (74%). Predominant organisms were Klebsiella (34.2%) and E. coli (31.6%); 67% of E. coli were phylogroup B2. Multilocus sequence types revealed multiple strains, 58% resistant to ≥3 antibiotic classes. On multivariable analysis, children with TEM-SHV-Ent infections more often had recent inpatient care (OR, 8.2), yet were diagnosed mostly as outpatients (OR, 25.6) and less in Neonatal Intensive Care Units (OR, 0.036) than controls. TEM-SHV-Ent patients had more gastrointestinal (OR, 23.7) and renal comorbidities (OR, 4.2). Differences in demographics, antibiotic exposure, and foreign bodies were not found. CONCLUSION: TEM-SHV-Ent are commonly linked to inpatient exposures in children with chronic conditions but most often present in outpatient settings. Clinicians should be aware of the potential increased risk for TEM-SHV-Ent infections in outpatients with gastrointestinal and renal comorbidities and histories of prolonged hospital stays.


Assuntos
Infecções Bacterianas , Gammaproteobacteria , beta-Lactamases/genética , Adolescente , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Estudos de Casos e Controles , Chicago , Criança , Pré-Escolar , Farmacorresistência Bacteriana/genética , Feminino , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/enzimologia , Gammaproteobacteria/genética , Humanos , Lactente , Recém-Nascido , Masculino , Epidemiologia Molecular , Estudos Retrospectivos , Fatores de Risco
8.
Infect Dis Ther ; 8(2): 243-254, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30772921

RESUMO

INTRODUCTION: The pandemic of extended-spectrum beta-lactamase-(ESBL)-producing Enterobacteriaceae (Ent) is strongly linked to the dissemination of CTX-M-type-ESBL-Ent. We sought to define the epidemiology of infections in children due to an emerging resistance type, CTX-M-9-group-producing-Ent (CTX-M-9-grp-Ent). METHODS: A retrospective matched case-control analysis of children with CTX-M-9-grp-Ent infections who received medical care at three Chicago area hospitals was performed. Cases were defined as children possessing extended-spectrum cephalosporin-resistant (ESC-R) infections due to blaCTX-M-9. PCR and DNA analysis assessed beta-lactamase (bla) genes, multi-locus sequence types (MLST) and phylogenetic grouping of E. coli. Controls were children with ESC-susceptible (ESC-S)-Ent infections matched one case to three controls by age, source, and hospital. The clinical-epidemiologic predictors of CTX-M-9-grp-Ent infection were assessed. RESULTS: Of 356 ESC-R-Ent isolates from children (median age 4.1 years), the CTX-M-9-group was the solely detected bla gene in 44 (12.4%). The predominant species was E. coli (91%) of virulent phylogroups D (60%) and B2 (40%). MLST revealed multiple strain types. On multivariable analysis, CTX-M-9-grp-Ent occurred more often in E. coli than other Ent genera (OR 7.4, 95% CI 2.4, 27.2), children of non-Black-White-Hispanic race (OR 7.4, 95% CI 2.4, 28.2), and outpatients (OR 4.5, 95% CI 1.7, 12.3), which was a very unexpected finding for infections due to antibiotic-resistant bacteria. Residents of South Chicago had a 6.7 times higher odds of having CTX-M-9-grp-Ent infections than those in the reference region (West), while residence in Northwestern Chicago was associated with an 81% decreased odds of infection. Other demographic, comorbidity, invasive-device, and antibiotic use differences were not found. CONCLUSION: CTX-M-9-grp-Ent infection may be associated with patient residence and is occurring in children without traditional in-patient exposure risk factors. This suggests that among children, the community environment may be a key contributor in the spread of these resistant pathogens.

9.
Pediatr Infect Dis J ; 38(6): 595-599, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30281548

RESUMO

BACKGROUND: Fluoroquinolones are uncommonly prescribed in children, yet pediatric multidrug resistant (MDR) enterobacteriaceae (Ent) infections often reveal fluoroquinolone resistance (FQR). We sought to define the molecular epidemiology of FQR and MDR-Ent in children. METHODS: A case-control analysis of children with MDR-Ent infections at 3 Chicago hospitals was performed. Cases were children with third-generation cephalosporin-resistant and/or carbapenem-resistant Ent infections. Polymerase chain reaction and DNA analysis assessed bla and plasmid-mediated FQR (PMFQR) genes. Controls were children with third-generation cephalosporin, fluoroquinolone, and carbapenem-susceptible Ent infections matched by age, source and hospital. We assessed clinical-epidemiologic predictors of PMFQR Ent infection. RESULTS: Of 169 third-generation cephalosporin-resistant and/or carbapenem-resistant Ent isolates from children (median age, 4.8 years), 85 were FQR; 56 (66%) contained PMFQR genes. The predominant organism was Escherichia coli, and most common bla gene blaCTX-M-1 group. In FQR isolates, PMFQR gene mutations included aac6'1bcr, oqxA/B, qepA and qnrA/B/D/S in 83%, 15%, 13% and 11% of isolates, respectively. FQR E. coli was often associated with phylogroup B2, ST43/ST131. On multivariable analysis, PMFQR Ent infections occurred mostly in outpatients (odds ratio, 33.1) of non-black-white-Hispanic race (odds ratio, 6.5). Residents of Southwest Chicago were >5 times more likely to have PMFQR Ent infections than those in the reference region, while residence in Central Chicago was associated with a 97% decreased risk. Other demographic, comorbidity, invasive-device, antibiotic use or healthcare differences were not found. CONCLUSIONS: The strong association of infection with MDR organisms showing FQR with patient residence rather than with traditional risk factors suggests that the community environment is a major contributor to spread of these pathogens in children.


Assuntos
Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/epidemiologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Fluoroquinolonas/farmacologia , Plasmídeos/genética , Adolescente , Estudos de Casos e Controles , Chicago/epidemiologia , Criança , Pré-Escolar , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Testes de Sensibilidade Microbiana , Fatores de Risco , Centros de Atenção Terciária , Adulto Jovem
10.
Infect Dis Clin North Am ; 32(1): 1-17, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29406971

RESUMO

Antimicrobial resistance is a global public health threat and a danger that continues to escalate. These menacing bacteria are having an impact on all populations; however, until recently, the increasing trend in drug-resistant infections in infants and children has gone relatively unrecognized. This article highlights the current clinical and molecular data regarding infection with antibiotic-resistant bacteria in children, with an emphasis on transmissible resistance and spread via horizontal gene transfer.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Bactérias/enzimologia , Bactérias/genética , Criança , Pré-Escolar , Transferência Genética Horizontal , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Humanos , Lactente , Saúde Pública , beta-Lactamases/biossíntese , beta-Lactamases/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamases/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA