Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Res ; 115(2): 463-475, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982533

RESUMO

Aims: The term angiogenesis refers to sprouting of new blood vessels from pre-existing ones. The angiogenic process involves cell migration and tubulogenesis requiring interaction between endothelial cells and the extracellular matrix. Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase found embedded in the basement membranes. As it promotes the stabilization of extracellular matrix, we investigated its possible role in angiogenesis both in vitro and in vivo. Methods and results: We analysed the effects of peroxidasin 1 gene silencing and supplementation by recombinant hsPxd01 in TeloHAEC endothelial cells on cell migration, tubulogenesis in matrigel, and intracellular signal transduction as assessed by kinase phosphorylation and expression of pro-angiogenic genes as measured by qRT-PCR. We further evaluated the angiogenic potential of recombinant peroxidasin in a chicken chorioallantoic membrane model. RNA silencing of endogenous hsPxd01 significantly reduced tube formation and cell migration, whereas supplementation by the recombinant peroxidase promoted tube formation in vitro and stimulated vascularization in vivo through its catalytic activity. Moreover, recombinant hsPxd01 promoted phosphorylation of Extracellular signal-Regulated Kinases (ERK1/2), Protein kinase B (Akt), and Focal Adhesion Kinase (FAK), and induced the expression of pro-angiogenic downstream genes: Platelet Derived Growth Factor Subunit B (PDGFB), endothelial-derived Heparin Binding EGF-like growth factor (HB-EGF), CXCL-1, Hairy-Related Transcription Factor 1 (HEY-1), DNA-binding protein inhibitor (ID-2), Snail Family Zinc Finger 1 (SNAI-1), as well as endogenous hsPxd01. However, peroxidasin silencing significantly reduced Akt and FAK phosphorylation but induced ERK1/2 activation after supplementation by recombinant hsPxd01. While hsPxd01 silencing significantly reduced expression of HEY-1, ID-2, and PDGFB, it did not affect expression of SNAI-1, HB-EGF, and CXCL-1 after supplementation by recombinant hsPxd01. Conclusion: Our findings suggest a role of enzymatically active peroxidasin 1 as a pro-angiogenic peroxidase and a modulator of ERK1/2, Akt and FAK signalling.


Assuntos
Células Endoteliais/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica , Peroxidases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Peroxidases/genética , Fosforilação , Transdução de Sinais
2.
Arch Biochem Biophys ; 654: 55-69, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30016634

RESUMO

Myeloperoxidase is a member of the mammalian peroxidase family, mainly expressed in the myeloblastic cell lineage. It is considered a major bactericidal agent as it is released in the phagosome where it catalyzes the formation of reactive oxygen species. It is also released in the extracellular spaces including blood where it is absorbed on (lipo)proteins and endothelial cell surface, interfering with endothelial function. We performed RNA sequencing on MPO-treated endothelial cells, analyzed their transcriptome and validated the profile of gene expression by individual qRT-PCR. Some of the induced genes could be grouped in several functional networks, including tubulogenesis, angiogenesis, and blood vessel morphogenesis and development as well as signal transduction pathways associated to these mechanisms. MPO treatment mimicked the effects of VEGF on several signal transduction pathways, such as Akt, ERK or FAK involved in angiogenesis. Accordingly MPO, independently of its enzymatic activity, stimulated tube formation by endothelial cells. RNA interference also pointed at a role of endogenous MPO in tubulogenesis and endothelium wound repair in vitro. These data suggest that MPO, whether from endogenous or exogenous sources, could play a role in angiogenesis and vascular repair in vivo.


Assuntos
Endotélio Vascular/enzimologia , Sistema de Sinalização das MAP Quinases , Peroxidase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Transformada , Humanos , Neovascularização Patológica/metabolismo , Processamento de Proteína Pós-Traducional , Transcriptoma
3.
J Leukoc Biol ; 101(6): 1419-1426, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28356347

RESUMO

Phosphodiesterases (PDEs) may modulate inflammatory pathways, but PDE expression is poorly documented in humans with sepsis. Using quantitative PCR on whole blood leukocytes, we characterized PDE mRNA expression in healthy volunteers (n = 20), healthy volunteers given lipopolysaccharide (LPS; n = 18), and critically ill patients with (n = 20) and without (n = 20) sepsis. PDE4B protein expression was also studied in magnetic-activated cell sorting (MACS)-isolated CD15+ neutrophils (from 7 healthy volunteers, 5 patients without and 5 with sepsis). We studied relationships between PDE expression, HLA-DR (mRNA and expression on CD14+ monocytes), tumor necrosis factor (TNF)-α, and interleukin (IL)-10 levels. LPS administration in volunteers was associated with increases in PDE4B and PDE4D and decreases in PDE4A and PDE7A mRNAs. The observed global down-regulation of the HLA-DR complex was correlated with PDE7A. Critically ill patients had lower TNF-α/IL-10 mRNA ratios than the volunteers had and global down-regulation of the HLA-DR complex. Septic patients had persistently lower mRNA levels of PDE7A, PDE4A, and 4B (also at a protein level) and decreasing levels of PDE4D over time. Low PDE4D mRNA levels correlated negatively with HLA-DMA and HLA-DMB. LPS administration and sepsis are, therefore, associated with different PDE mRNA expression patterns. The effect of PDE changes on immune dysfunction and HLA-DR expression requires further investigation.


Assuntos
Antígenos HLA-DR/metabolismo , Leucócitos/enzimologia , Lipopolissacarídeos/farmacologia , Neutrófilos/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Sepse/fisiopatologia , Estudos de Casos e Controles , Humanos , Leucócitos/efeitos dos fármacos , Masculino , Neutrófilos/efeitos dos fármacos , Diester Fosfórico Hidrolases/genética , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA