Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Viruses ; 16(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39339977

RESUMO

African swine fever virus (ASFV) is the causative agent of an often lethal disease in domestic pigs, African swine fever (ASF). ASF is currently a pandemic disease challenging pig production in Eurasia. While the ASFV genome encodes for over 160 proteins, the function of most of them are still not characterized. Among those ASF genes with unknown functions is the E111R gene. It has been recently reported that the deletion of the E111R gene from the genome of the virulent Chinese field isolate SY18 strain produced a reduction of virus virulence when pigs were inoculated at relatively low doses. Conversely, we report here that deletion of the ASFV gene E111R in the Georgia 2010 isolate does not alter the virulence of the parental virus in experimentally inoculated pigs. A recombinant virus lacking the E111R gene, ASFV-G-∆E111R was intramuscularly (IM) inoculated in domestic pigs at a dose of 102 HAD50 of ASFV-G-∆E111R and compared with animals that received a similar dose of virulent ASFV-G. Both, animals inoculated with either the recombinant ASFV-G-∆E111R or the parental virus developed a fatal form of the disease and were euthanized around the 6th-7th day post-inoculation (dpi).


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Deleção de Genes , Replicação Viral , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/virologia , Virulência/genética , Suínos , Proteínas Virais/genética , Genoma Viral , Sus scrofa/virologia , República da Geórgia
2.
bioRxiv ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39229182

RESUMO

Sleep is an essential, tightly regulated biological function. Sleep is also a homeostatic process, with the need to sleep increasing as a function of being awake. Acute sleep deprivation (SD) increases sleep need, and subsequent recovery sleep (RS) discharges it. SD is known to alter brain gene expression in rodents, but it remains unclear which changes are linked to sleep homeostasis, SD-related impairments, or non-sleep-specific effects. To investigate this question, we analyzed RNA-seq data from adult wild-type male mice subjected to 3 and 5-6 hours of SD and 2 and 6 hours of RS after SD. We hypothesized molecular changes associated with sleep homeostasis mirror sleep pressure dynamics as defined by brain electrical activity, peaking at 5-6 hours of SD, and are no longer differentially expressed after 2 hours of RS. We report 5-6 hours of SD produces the largest effect on gene expression, affecting approximately half of the cortical transcriptome, with most differentially expressed genes (DEGs) downregulated. The majority of DEGs normalize after 2 hours of RS and are involved in redox metabolism, chromatin regulation, and DNA damage/repair. Additionally, RS affects gene expression related to mitochondrial metabolism and Wnt-signaling, potentially contributing to its restorative effects. DEGs associated with cholesterol metabolism and stress response do not normalize within 6 hours and may be non-sleep-specific. Finally, DEGs involved in insulin signaling, MAPK signaling, and RNA-binding may mediate the impairing effects of SD. Overall, our results offer insight into the molecular mechanisms underlying sleep homeostasis and the broader effects of SD.

3.
iScience ; 27(9): 110752, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39280614

RESUMO

Sleep deprivation (SD) has negative effects on brain and body function. Sleep problems are prevalent in a variety of disorders, including neurodevelopmental and psychiatric conditions. Thus, understanding the molecular consequences of SD is of fundamental importance in biology. In this study, we present the first simultaneous bulk and single-nuclear RNA sequencing characterization of the effects of SD in the male mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of over 1500 genes, particularly those involved in splicing and RNA binding. At both the global and cell-type specific level, SD has a large repressive effect on transcription, downregulating thousands of genes and transcripts. As a resource we provide extensive characterizations of cell-types, genes, transcripts, and pathways affected by SD. We also provide publicly available tutorials aimed at allowing readers adapt analyses performed in this study to their own datasets.

4.
Viruses ; 16(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39205239

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a highly infectious and lethal disease of domesticated swine. Outbreaks of ASF have been mostly restricted to the continent of Africa. The outbreaks that have occurred outside of Africa were controlled by extensive depopulation of the domesticated pig population. However, in 2007, an outbreak occurred in the country of Georgia, where ASFV infected wild pigs and quickly spread across eastern Europe. Since the reintroduction of ASF into Europe, variants of the current pandemic strain, ASFV Georgia 2007/01 (ASFV-G), which is classified as Genotype 2 based on p72 sequencing, have been reported in countries within western Europe, Asia, and the island of Hispaniola. Additionally, isolates collected in 2020 confirmed the presence of variants of ASFV-G in Nigeria. Recently, we reported similar variants of ASFV-G collected from domestic pigs suspected of dying of ASF in Ghana in 2022. Here, we retroactively report, based on full-length sequencing, that similar variants were present in Ghana in 2021. The SNP analysis revealed derivatives of ASFV with distinct genetic markers. Furthermore, we identified three full-length ASFV genomes as Genotype 1, indicating that there were two genotypes circulating in proximity during the 2021 ASF outbreaks in Ghana.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Surtos de Doenças , Genoma Viral , Genótipo , Filogenia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Gana/epidemiologia , Suínos , Surtos de Doenças/veterinária , Estudos Retrospectivos , Variação Genética
5.
Viruses ; 16(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39205267

RESUMO

Obtaining a complete good-quality sequence and annotation for the long double-stranded DNA genome of the African swine fever virus (ASFV) from next-generation sequencing (NGS) technology has proven difficult, despite the increasing availability of reference genome sequences and the increasing affordability of NGS. A gap analysis conducted by the global African swine fever research alliance (GARA) partners identified that a standardized, automatic pipeline for NGS analysis was urgently needed, particularly for new outbreak strains. Whilst there are several diagnostic and research labs worldwide that collect isolates of the ASFV from outbreaks, many do not have the capability to analyze, annotate, and format NGS data from outbreaks for submission to NCBI, and some publicly available ASFV genomes have missing or incorrect annotations. We developed an automated, standardized pipeline for the analysis of NGS reads that directly provides users with assemblies and annotations formatted for their submission to NCBI. This pipeline is freely available on GitHub and has been tested through the GARA partners by examining two previously sequenced ASFV genomes; this study also aimed to assess the accuracy and limitations of two strategies present within the pipeline: reference-based (Illumina reads) and de novo assembly (Illumina and Nanopore reads) strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Suínos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Febre Suína Africana/virologia , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos
6.
J Virol ; 98(8): e0023124, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38980063

RESUMO

African swine fever virus (ASFV) is the causative agent of a contagious disease affecting wild and domestic swine. The function of B169L protein, as a potential integral structural membrane protein, remains to be experimentally characterized. Using state-of-the-art bioinformatics tools, we confirm here earlier predictions indicating the presence of an integral membrane helical hairpin, and further suggest anchoring of this protein to the ER membrane, with both terminal ends facing the lumen of the organelle. Our evolutionary analysis confirmed the importance of purifying selection in the preservation of the identified domains during the evolution of B169L in nature. Also, we address the possible function of this hairpin transmembrane domain (HTMD) as a class IIA viroporin. Expression of GFP fusion proteins in the absence of a signal peptide supported B169L insertion into the ER as a Type III membrane protein and the formation of oligomers therein. Overlapping peptides that spanned the B169L HTMD were reconstituted into ER-like membranes and the adopted structures analyzed by infrared spectroscopy. Consistent with the predictions, B169L transmembrane sequences adopted α-helical conformations in lipid bilayers. Moreover, single vesicle permeability assays demonstrated the assembly of lytic pores in ER-like membranes by B169L transmembrane helices, a capacity confirmed by ion-channel activity measurements in planar bilayers. Emphasizing the relevance of these observations, pore-forming activities were not observed in the case of transmembrane helices derived from EP84R, another ASFV protein predicted to anchor to membranes through a α-helical HTMD. Overall, our results support predictions of viroporin-like function for the B169L HTMD.IMPORTANCEAfrican swine fever (ASF), a devastating disease affecting domestic swine, is widely spread in Eurasia, producing significant economic problems in the pork industry. Approaches to prevent/cure the disease are mainly restricted to the limited information concerning the role of most of the genes encoded by the large (160-170 kba) virus genome. In this report, we present the experimental data on the functional characterization of the African swine fever virus (ASFV) gene B169L. Data presented here indicates that the B169L gene encodes for an essential membrane-associated protein with a viroporin function.


Assuntos
Vírus da Febre Suína Africana , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Suínos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Domínios Proteicos , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Sequência de Aminoácidos
7.
Pathogens ; 13(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38668274

RESUMO

We have previously reported that the recombinant African Swine Fever (ASF) vaccine candidate ASFV-G-Δ9GL/ΔUK efficiently induces protection in domestic pigs challenged with the virulent strain Georgia 2010 (ASFV-G). As reported, ASFV-G-Δ9GL/ΔUK induces protection, while intramuscularly (IM), administered at doses of 104 HAD50 or higher, prevents ASF clinical disease in animals infected with the homologous ASFV g strain. Like other recombinant vaccine candidates obtained from ASFV field isolates, ASFV-G-Δ9GL/ΔUK stocks need to be produced in primary cultures of swine macrophages, which constitutes an important limitation in the production of large virus stocks at the industrial level. Here, we describe the development of ASFV-G-Δ9GL/ΔUK stocks using IPKM (Immortalized Porcine Kidney Macrophage) cells, which are derived from swine macrophages. We show that ten successive passages of ASFV-G-Δ9GL/ΔUK in IPKM cells induced small changes in the virus genome. The produced virus, ASFV-G-Δ9GL/ΔUKp10, presented a similar level of replication in swine macrophages cultures to that of the original ASFV-G-Δ9GL/ΔUK (ASFV-G-Δ9GL/ΔUKp0). The protective efficacy of ASFV-G-Δ9GL/ΔUKp10 was evaluated in pigs that were IM-inoculated with either 104 or 106 HAD50 of ASFV-G-Δ9GL/ΔUKp10. While animals inoculated with 104 HAD50 present a partial protection against the experimental infection with the virulent parental virus ASFV-G, those inoculated with 106 HAD50 were completely protected. Therefore, as was just recently reported for another ASF vaccine candidate, ASFV-G-ΔI177L, IPKM cells are an effective alternative to produce stocks for vaccine strains which only grow in swine macrophages.

8.
Rev. chil. cardiol ; 43(1): 42-48, abr. 2024. ilus, graf
Artigo em Espanhol | LILACS | ID: biblio-1559641

RESUMO

Introducción: La presencia de una vena cava superior izquierda persistente, durante el implante de electrodos endocavitarios para la resincronización cardíaca, representa una anomalía poco habitual de gran relevancia, que puede presentarse de forma inesperada durante el abordaje venoso superior habitual. Planteando desafíos técnicos en su implante y dudas sobre su eficacia o seguridad a corto y largo plazo; existiendo aislados casos publicados. Caso clínico: Presentamos un caso complejo con esta inusual anomalía llevado a implante de este dispositivo de forma exitosa, con funcionamiento normal durante su seguimiento de 7 años, llevado posteriormente a cambio de generador. Conclusiones: La vena cava superior izquierda persistente es la anomalía del retorno venoso cardiaco más frecuente, aunque su prevalencia es baja, presenta una gran relevancia en el implante y posicionamiento de electrodos endocavitarios necesarios para la terapia de resincronización cardiaca. Existe una evidencia creciente sobre su factibilidad y seguridad a corto y largo plazo a pesar de sus dificultades técnicas asociadas.


Introduction: The presence of a persistent left superior vena cava, during the implantation of endocavitary electrodes for cardiac resynchronization, represents an unusual anomaly of great relevance, which can occur unexpectedly during the usual superior venous approach. It constitutes a technical challenge in your implant and doubts about its effectiveness or safety in the short and long term. There are isolated published cases. We present a complex case with this unusual anomaly that led to successful implantation of this device, with a normal functio during its 7-year follow-up It was followed by uneventul generator change. Conclusions: Persistent left superior vena cava is the most common cardiac venous return anomaly. Although its prevalence is low, it is of great relevance in the implantation and positioning of endocavitary electrodes necessary for cardiac resynchronization therapy. There is growing evidence about its feasibility and safety in the short and long term despite.


Assuntos
Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Ressincronização Cardíaca/métodos , Insuficiência Cardíaca
9.
Viruses ; 16(3)2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543742

RESUMO

The African swine fever virus (ASFV) mutant ASFV-G-∆I177L is a safe and efficacious vaccine which induces protection against the challenge of its parental virus, the Georgia 2010 isolate. Although a genetic DIVA (differentiation between infected and vaccinated animals) assay has been developed for this vaccine, still there is not a serological DIVA test for differentiating between animals vaccinated with ASFV-G-∆I177L and those infected with wild-type viruses. In this report, we describe the development of the ASFV-G-∆I177L mutant having deleted the EP402R gene, which encodes for the viral protein responsible for mediating the hemadsorption of swine erythrocytes. The resulting virus, ASFV-G-∆I177L/∆EP402R, does not have a decreased ability to replicates in swine macrophages when compared with the parental ASFV-G-∆I177L. Domestic pigs intramuscularly (IM) inoculated with either 102 or 106 HAD50 of ASFV-G-∆I177L/∆EP402R remained clinically normal, when compared with a group of mock-vaccinated animals, indicating the absence of residual virulence. Interestingly, an infectious virus could not be detected in the blood samples of the ASFV-G-∆I177L/∆EP402R-inoculated animals in either group at any of the time points tested. Furthermore, while all of the mock-inoculated animals presented a quick and lethal clinical form of ASF after the intramuscular inoculation challenge with 102 HAD50 of highly virulent parental field isolate Georgia 2010 (ASFV-G), all of the ASFV-G-∆I177L/∆EP402R-inoculated animals were protected, remaining clinically normal until the end of the observational period. Most of the ASFV-G-∆I177L/∆EP402R-inoculated pigs developed strong virus-specific antibody responses against viral antigens, reaching maximum levels at 28 days post inoculation. Importantly, all of the sera collected at that time point in the ASFV-G-∆I177L/∆EP402R-inoculated pigs did not react in a direct ELISA coated with the recombinant EP402R protein. Conversely, the EP402R protein was readily recognized by the pool of sera from the animals immunized with recombinant live attenuated vaccine candidates ASFV-G-∆I177L, ASFV-G-∆MGF, or ASFV-G-∆9GL/∆UK. Therefore, ASFV-G-∆I177L/∆EP402R is a novel, safe and efficacious candidate with potential to be used as an antigenically DIVA vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Vacinas Virais/genética , Sus scrofa , Virulência , Vacinas Sintéticas/genética , Vacinas Atenuadas/genética , Proteínas Recombinantes/genética , Deleção de Genes
10.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38076891

RESUMO

Sleep deprivation (SD) has negative effects on brain function. Sleep problems are prevalent in neurodevelopmental, neurodegenerative and psychiatric disorders. Thus, understanding the molecular consequences of SD is of fundamental importance in neuroscience. In this study, we present the first simultaneous bulk and single-nuclear (sn)RNA sequencing characterization of the effects of SD in the mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of thousands of transcripts. At both the global and cell-type specific level, SD has a large repressive effect on transcription, down-regulating thousands of genes and transcripts; underscoring the importance of accounting for the effects of sleep loss in transcriptome studies of brain function. As a resource we provide extensive characterizations of cell types, genes, transcripts and pathways affected by SD; as well as tutorials for data analysis.

11.
Viruses ; 15(10)2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37896841

RESUMO

ASFV vaccine candidate ASFV-G-ΔI177L has been shown to be highly efficacious in inducing protection against challenges with the parental virus, the Georgia 2010 isolate, as well as against field strains isolated from Vietnam. ASFV-G-ΔI177L has been shown to produce protection even when used at low doses (102 HAD50) and shows no residual virulence even when administered at high doses (106 HAD50) or evaluated for a relatively long period of time (6 months). ASFV-G-ΔI177L stocks can only be massively produced in primary cell macrophages. Alternatively, its modified version (ASFV-G-ΔI177L/ΔLVR) grows in a swine-derived cell line (PIPEC), acquiring significant genomic modifications. We present here the development of ASFV-G-ΔI177L stocks in a swine macrophage cell line, IPKM, and its protective efficacy when evaluated in domestic pigs. Successive passing of ASFV-G-ΔI177L in IPKM cells produces minimal genomic changes. Interestingly, a stock of ASFV-G-ΔI177L obtained after 10 passages (ASFV-G-ΔI177Lp10) in IPKM cells showed very small genomic changes when compared with the original virus stock. ASFV-G-ΔI177Lp10 conserves similar growth kinetics in primary swine macrophage cultures than the original parental virus ASFV-G-ΔI177L. Pigs infected with 103 HAD50 of ASFV-G-ΔI177Lp10 developed a strong virus-specific antibody response and were completely protected against the challenge with the parental virulent field isolate Georgia 2010. Therefore, IPKM cells could be an effective alternative for the production of ASFV vaccine stocks for those vaccine candidates exclusively growing in swine macrophages.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Proteínas Virais/genética , Sus scrofa , Macrófagos , Linhagem Celular
12.
Viruses ; 15(10)2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896911

RESUMO

African swine fever virus (ASFV) is a structurally complex, double-stranded DNA virus, which causes African swine fever (ASF), a contagious disease affecting swine. ASF is currently affecting pork production in a large geographical region, including Eurasia and the Caribbean. ASFV has a large genome, which harbors more than 160 genes, but most of these genes' functions have not been experimentally characterized. One of these genes is the O174L gene which has been experimentally shown to function as a small DNA polymerase. Here, we demonstrate that the deletion of the O174L gene from the genome of the virulent strain ASFV Georgia2010 (ASFV-G) does not significantly affect virus replication in vitro or in vivo. A recombinant virus, having deleted the O174L gene, ASFV-G-∆O174L, was developed to study the effect of the O174L protein in replication in swine macrophages cultures in vitro and disease production when inoculated in pigs. The results demonstrated that ASFV-G-∆O174L has similar replication kinetics to parental ASFV-G in swine macrophage cultures. In addition, animals intramuscularly inoculated with 102 HAD50 of ASFV-G-∆O174L presented a clinical form of the disease that is indistinguishable from that induced by the parental virulent strain ASFV-G. All animals developed a lethal disease, being euthanized around day 7 post-infection. Therefore, although O174L is a well-characterized DNA polymerase, its function is apparently not critical for the process of virus replication, both in vitro and in vivo, or for disease production in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Georgia , Virulência/genética , Deleção de Genes , Sus scrofa , Replicação Viral , DNA Polimerase Dirigida por DNA/genética
13.
Viruses ; 15(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632064

RESUMO

African swine fever (ASF) is a lethal disease of domestic pigs that has been causing outbreaks for over a century in Africa ever since its first discovery in 1921. Since 1957, there have been sporadic outbreaks outside of Africa; however, no outbreak has been as devastating and as far-reaching as the current pandemic that originated from a 2007 outbreak in the Republic of Georgia. Derivatives with a high degree of similarity to the progenitor strain, ASFV-Georgia/2007, have been sequenced from various countries in Europe and Asia. However, the current strains circulating in Africa are largely unknown, and 24 different genotypes have been implicated in different outbreaks. In this study, ASF isolates were collected from samples from swine suspected of dying from ASF on farms in Ghana in early 2022. While previous studies determined that the circulating strains in Ghana were p72 Genotype I, we demonstrate here that the strains circulating in 2022 were derivatives of the p72 Genotype II pandemic strain. Therefore, this study demonstrates for the first time the emergence of Genotype II ASFV in Ghana.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/genética , Gana/epidemiologia , Febre Suína Africana/epidemiologia , Genótipo , Sus scrofa
14.
Viruses ; 15(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515164

RESUMO

African swine fever (ASF) is a highly contagious disease that affects wild and domestic swine. Currently, the disease is present as a pandemic affecting pork production in Eurasia and the Caribbean region. The etiological agent of ASF is a large, highly complex structural virus (ASFV) harboring a double-stranded genome encoding for more than 160 proteins whose functions, in most cases, have not been experimentally characterized. We show here that deletion of the ASFV gene H240R from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) isolate partially decreases virus virulence when experimentally inoculated in domestic swine. ASFV-G-∆H240R, a recombinant virus harboring the deletion of the H240R gene, was produced to evaluate the function of the gene in the development of disease in pigs. While all animals intramuscularly inoculated with 102 HAD50 of ASFV-G developed a fatal form of the disease, forty percent of pigs receiving a similar dose of ASFV-G-∆H240R survived the infection, remaining healthy during the 28-day observational period, and the remaining sixty percent developed a protracted but fatal form of the disease compared to that induced by ASFV-G. Additionally, all animals inoculated with ASFV-G-∆H240R presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G. Animals surviving infection with ASFV-G-∆H240R developed a strong virus-specific antibody response and were protected against the challenge of the virulent parental ASFV-G.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Virulência/genética , Deleção de Genes , Fatores de Virulência/genética
15.
Pathogens ; 12(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375495

RESUMO

African swine fever (ASF) is an important disease in swine currently producing a pandemic affecting pig production worldwide. Except in Vietnam, where two vaccines were recently approved for controlled use in the field, no vaccine is commercially available for disease control. Up to now, the most effective vaccines developed are based on the use of live-attenuated viruses. Most of these promising vaccine candidates were developed by deleting virus genes involved in the process of viral pathogenesis and disease production. Therefore, these vaccine candidates were developed via the genomic modification of parental virus field strains, producing recombinant viruses and reducing or eliminating their residual virulence. In this scenario, it is critical to confirm the absence of any residual virulence in the vaccine candidate. This report describes the assessment of the presence of residual virulence in the ASFV vaccine candidate ASFV-G-∆I177L in clinical studies conducted under high virus loads and long-term observation periods. The results demonstrated that domestic pigs intramuscularly inoculated with 106 HAD50 of ASFV-G-∆I177L did not show the presence of any clinical sign associated with ASF when observed daily either 90 or 180 days after vaccination. In addition, necropsies conducted at the end of the experiment confirmed the absence of macroscopic internal lesions associated with the disease. These results corroborate the safety of using ASFV-G-∆I177L as a vaccine candidate.

16.
Biologicals ; 83: 101685, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276750

RESUMO

African swine fever (ASF) is a devastating disease that is currently producing a panzootic significantly impacting the swine industry worldwide. One of the major challenges for advancing the development of ASF vaccines has been the absence of international standards for ASF vaccine purity, potency, safety, and efficacy. To date, the most effective experimental vaccines have been live attenuated strains of viruses. Most of these promising vaccine candidates have been developed by deleting virus genes involved in the process of viral pathogenesis and disease production. This approach requires genomic modification of a parental virus field strain through a process of homologous recombination followed by purification of the recombinant attenuated virus. In this scenario, it is critical to confirm the absence of any parental virulent virus in the final virus stock used for vaccine production. We present here a protocol to establish the purity of virus stock using the live attenuated vaccine candidates ASFV-G-ΔMGF, ASFV-G-Δ9 GLΔUK and ASFV-G-ΔI177L. Procedures described here includes inoculation in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates. This protocol is proposed as a model to ensure that master seed virus stock used for vaccine production does not contain residual parental virulent virus. Procedures described here includes a passage in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas , Virulência , Proteínas Virais/genética , Vacinas Sintéticas
17.
J Community Genet ; 14(3): 329-336, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126135

RESUMO

Underserved patients face substantial barriers to receiving cancer genetic services. The Cancer Health Assessments Reaching Many (CHARM) study evaluated ways to increase access to genetic testing for individuals in underserved populations at risk for hereditary cancer syndromes (HCS). Here, we report the successful implementation of CHARM in a low-resource environment and the development of sustainable processes to continue genetic risk assessment in this setting. The research team involved key clinical personnel and patient advisors at Denver Health to provide input on study methods and materials. Through iterative and collaborative stakeholder engagement, the team identified barriers and developed solutions that would both facilitate participation in CHARM and be feasible to implement and sustain long term in clinical care. With a focus on infrastructure building, educational modules were developed to increase awareness among referring providers, and standard methods of identifying and managing HCS patients were implemented in the electronic medical record. Three hundred sixty-four DH patients successfully completed the risk assessment tool within the study, and we observed a sustained increase in referrals to genetics for HCS (from 179 in 2017 to 427 in 2021 post-intervention). Implementation of the CHARM study at a low-resourced safety net health system resulted in sustainable improvements in access to cancer genetic risk assessment and services that continue even after the study ended.Trial registration NCT03426878.

18.
Viruses ; 15(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37243123

RESUMO

The E2 glycoprotein is one of the four structural proteins of the classical swine fever virus (CSFV) particle. E2 has been shown to be involved in many virus functions, including adsorption to host cells, virus virulence and interaction with several host proteins. Using a yeast two-hybrid screen, we have previously shown that the CSFV E2 specifically interacts with swine host protein medium-chain-specific acyl-Coenzyme A dehydrogenase (ACADM), an enzyme that catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. Here, we show that interaction between ACADM and E2 also happens in swine cells infected with CSFV using two different procedures: coimmunoprecipitation and a proximity ligation assay (PLA). In addition, the amino acid residues in E2 critically mediating the interaction with ACADM, M49 and P130 were identified via a reverse yeast two-hybrid screen using an expression library composed of randomly mutated versions of E2. A recombinant CSFV, E2ΔACADMv, harboring substitutions at residues M49I and P130Q in E2, was developed via reverse genomics from the highly virulent Brescia isolate. E2ΔACADMv was shown to have the same kinetics growth in swine primary macrophages and SK6 cell cultures as the parental Brescia strain. Similarly, E2ΔACADMv demonstrated a similar level of virulence when inoculated to domestic pigs as the parental Brescia. Animals intranasally inoculated with 105 TCID50 developed a lethal form of clinical disease with virological and hematological kinetics changes undistinguishable from those produced by the parental strain. Therefore, interaction between CSFV E2 and host ACADM is not critically involved in the processes of virus replication and disease production.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Suínos , Animais , Vírus da Febre Suína Clássica/fisiologia , Saccharomyces cerevisiae/metabolismo , Linhagem Celular , Proteínas do Envelope Viral/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
19.
J Virol ; 97(6): e0035023, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37212688

RESUMO

African swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine in Central Europe to East Asia, resulting in economic losses for the swine industry. The virus contains a large double-stranded DNA genome that contains more than 150 genes, most with no experimentally characterized function. In this study, we evaluate the potential function of the product of ASFV gene B117L, a 115-amino-acid integral membrane protein transcribed at late times during the virus replication cycle and showing no homology to any previously published protein. Hydrophobicity distribution along B117L confirmed the presence of a single transmembrane helix, which, in combination with flanking amphipathic sequences, composes a potential membrane-associated C-terminal domain of ca. 50 amino acids. Ectopic transient cell expression of the B117L gene as a green fluorescent protein (GFP) fusion protein revealed the colocalization with markers of the endoplasmic reticulum (ER). Intracellular localization of various B117L constructs also displayed a pattern for the formation of organized smooth ER (OSER) structures compatible with the presence of a single transmembrane helix with a cytoplasmic carboxy terminus. Using partially overlapping peptides, we further demonstrated that the B117L transmembrane helix has the capacity to establish spores and ion channels in membranes at low pH. Furthermore, our evolutionary analysis showed the high conservation of the transmembrane domain during the evolution of the B117L gene, indicating that the integrity of this domain is preserved by the action of the purifying selection. Collectively our data support a viroporin-like assistant role for the B117L gene-encoded product in ASFV entry. IMPORTANCE ASFV is responsible for an extensively distributed pandemic causing important economic losses in the pork industry in Eurasia. The development of countermeasures is partially limited by the insufficient knowledge regarding the function of the majority of the more than 150 genes present on the virus genome. Here, we provide data regarding the functional experimental evaluation of a previously uncharacterized ASFV gene, B117L. Our data suggest that the B117L gene encodes a small membrane protein that assists in the permeabilization of the ER-derived envelope during ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Permeabilidade da Membrana Celular , Proteínas de Membrana , Proteínas Virais , Internalização do Vírus , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Genoma Viral , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Permeabilidade da Membrana Celular/genética
20.
Neurobiol Sleep Circadian Rhythms ; 14: 100092, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37020466

RESUMO

Sleep deprivation (SD) results in profound cellular and molecular changes in the adult mammalian brain. Some of these changes may result in, or aggravate, brain disease. However, little is known about how SD impacts gene expression in developing animals. We examined the transcriptional response in the prefrontal cortex (PFC) to SD across postnatal development in male mice. We used RNA sequencing to identify functional gene categories that were specifically impacted by SD. We find that SD has dramatically different effects on PFC genes depending on developmental age. Gene expression differences after SD fall into 3 categories: present at all ages (conserved), present when mature sleep homeostasis is first emerging, and those unique to certain ages. Developmentally conserved gene expression was limited to a few functional categories, including Wnt-signaling which suggests that this pathway is a core mechanism regulated by sleep. In younger ages, genes primarily related to growth and development are affected while changes in genes related to metabolism are specific to the effect of SD in adults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA