Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Endocrinology ; 155(8): 3160-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24885572

RESUMO

Dio3 is the most distal gene of the imprinted Dlk1-Dio3 gene locus and is expressed according to parental origin. Dio3 encodes the type 3 deiodinase (D3), a thioredoxin-fold like containing selenoenzyme that inactivates thyroid hormone and dampens thyroid hormone signaling. Here we used heterozygous animals with disruption of the Dio3 gene to study the allelic expression pattern of Dio3 in pancreatic ß-cells and the metabolic phenotype resulting from its inactivation. Adult heterozygous mice with disruption of the Dio3 gene with maternal inheritance of the inactive Dio3 allele exhibited a total loss of D3 activity in isolated pancreatic islets, approximately 30% reduction in total pancreatic islet area, a marked decrease in insulin2 mRNA and in vivo glucose intolerance. In contrast, inheritance of the inactive Dio3 allele from the father did not affect D3 activity in isolated pancreatic islets and did not result in a pancreatic phenotype. Furthermore, exposure of pancreatic explants, D3-expressing MIN6-C3 cells or isolated pancreatic islets to 100 nM T3 for 24 hours reduced insulin2 mRNA by approximately 50% and the peak of glucose-induced insulin secretion. An unbiased analysis of T3-treated pancreatic islets revealed the down-regulation of 21 gene sets (false discovery rate q value < 25%) involved in nucleolar function and transcription of rRNA, ribonucleotide binding, mRNA translation, and membrane organization. We conclude that the Dio3 gene is preferentially expressed from the maternal allele in pancreatic islets and that the inactivation of this allele is sufficient to disrupt glucose homeostasis by reducing the pancreatic islet area, insulin2 gene expression, and glucose-stimulated insulin secretion.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Iodeto Peroxidase/genética , Alelos , Animais , Regulação da Expressão Gênica , Homeostase , Padrões de Herança , Insulina/metabolismo , Secreção de Insulina , Iodeto Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Glândula Tireoide/fisiologia , Tri-Iodotironina/fisiologia
2.
Endocrinology ; 152(10): 3717-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21828183

RESUMO

Deiodinases are selenoproteins that activate or inactivate thyroid hormone. During vertebrate development, these pathways control thyroid hormone action in a cell-specific fashion explaining how systemic thyroid hormone can affect local control of tissue embryogenesis. Here we investigated the role of the thyroid hormone-inactivating deiodinase (D3) in pancreatic islet function and glucose homeostasis. D3 expression was determined by real-time PCR, immunofluorescence, and enzyme activity. Embryonic and adult wild-type mice and Mice with targeted disruption of Dio3 gene (D3KO) as well as human fetal pancreas and adult islets were studied. Insulin secretion was evaluated in adult mouse isolated islets. We found Dio3 gene expression and protein highly expressed in embryonic and adult pancreatic islets, predominantly in ß-cells in both humans and mice. However, mRNA levels were barely detectable for both the thyroid hormone-activating deiodinases types 1 and 2. D3KO animals were found to be glucose intolerant due to in vitro and in vivo impaired glucose-stimulated insulin secretion, without changes in peripheral sensitivity to insulin. D3KO neonatal (postnatal day 0) and adult pancreas exhibited reduced total islet area due to reduced ß-cell mass, insulin content, and impaired expression of key ß-cells genes. D3 expression in perinatal pancreatic ß-cells prevents untimely exposure to thyroid hormone, the absence of which leads to impaired ß-cell function and subsequently insulin secretion and glucose homeostasis. An analogous role is likely in humans, given the similar D3 expression pattern.


Assuntos
Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Iodeto Peroxidase/fisiologia , Animais , Humanos , Insulina/análise , Secreção de Insulina , Iodeto Peroxidase/análise , Camundongos , Camundongos Knockout
3.
Endocrine ; 29(3): 391-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16943575

RESUMO

In the present study, we investigated the protein levels and phosphorylation status of the insulin receptor and insulin receptor substrates (IRS-1, IRS-2, and IRS-3) as well as their association with PI(3)-kinase in the rat adipose tissue of two models of insulin resistance: dexamethasone treatment and aging. AKT and atypical PKC phosphorylation detection were also performed. Both models showed decreased insulin-induced IRS-1 and IRS-2 tyrosine phosphorylation, accompanied by reduced protein levels of IRS-1 and IRS-2. Nevertheless, IRS-3 protein level was unchanged in aging but increased in dexamethasone-treated rats. PI(3)-kinase association with IRS-1 was reduced in aged rats, whereas dexamethasone-treated rats showed a reduced IRS-2/ PI(3)-kinase association. However, IRS-3 association with PI(3)-kinase was reduced in both models, as well as insulin-induced AKT and PKC phosphorylation. The alterations described in the present study show that the action of insulin is differently impaired depending on the origin of insulin resistance. These differences might be directly linked to the singular metabolic features of the models we tested.


Assuntos
Tecido Adiposo/metabolismo , Envelhecimento/fisiologia , Dexametasona/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Obesidade/metabolismo , Fosfoproteínas/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/análise , Peso Corporal , Insulina/sangue , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina , Isoenzimas/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Mol Cell Endocrinol ; 251(1-2): 33-41, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16597486

RESUMO

The adaptation of pancreatic islets to pregnancy includes increased beta cell proliferation, expansion of islet mass, and increased insulin synthesis and secretion. Most of these adaptations are induced by prolactin (PRL). We have previously described that in vitro PRL treatment increases ERK3 expression in isolated rat pancreatic islets. This study shows that ERK3 is also upregulated during pregnancy. Islets from pregnant rats treated with antisense oligonucleotide targeted to the PRL receptor displayed a significant reduction in ERK3 expression. Immunohistochemical double-staining showed that ERK3 expression is restricted to pancreatic beta cells. Transfection with antisense oligonucleotide targeted to ERK3 abolished the insulin secretion stimulated by glucose in rat islets and by PMA in RINm5F cells. Therefore, we examined the participation of ERK3 in the activation of a cellular target involved in secretory events, the microtubule associated protein MAP2. PMA induced ERK3 phosphorylation that was companied by an increase in ERK3/MAP2 association and MAP2 phosphorylation. These observations provide evidence that ERK3 is involved in the regulation of stimulus-secretion coupling in pancreatic beta cells.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/biossíntese , Receptores da Prolactina/metabolismo , Animais , Células Cultivadas , Feminino , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Modelos Animais , Oligonucleotídeos Antissenso , Fosforilação , Gravidez , Ratos , Ratos Wistar , Acetato de Tetradecanoilforbol/farmacologia , Regulação para Cima
5.
FEBS Lett ; 580(1): 285-90, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16376341

RESUMO

The effect of dehydroepiandrosterone (DHEA) on pancreatic islet function of aged rats, an animal model with impaired glucose-induced insulin secretion, was investigated. The following parameters were examined: morphological analysis of endocrine pancreata by immunohistochemistry; protein levels of insulin receptor, IRS-1, IRS-2, PI 3-kinase, Akt-1, and Akt-2; and static insulin secretion in isolated pancreatic islets. Pancreatic islets from DHEA-treated rats showed an increased beta-cell mass accompanied by increased Akt-1 protein level but reduced IR, IRS-1, and IRS-2 protein levels and enhanced glucose-stimulated insulin secretion. The present results suggest that DHEA may be a promising drug to prevent diabetes during aging.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Envelhecimento/metabolismo , Tamanho Celular/efeitos dos fármacos , Desidroepiandrosterona/administração & dosagem , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Humanos , Imuno-Histoquímica , Proteínas Substratos do Receptor de Insulina , Secreção de Insulina , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Fosfatidilinositol 3-Quinases/biossíntese , Fosfoproteínas/biossíntese , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA