Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
medRxiv ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39281766

RESUMO

Background: Alzheimer's disease (AD) has a high heritable component characteristic of complex diseases, yet many of the genetic risk factors remain unknown. We combined genome-wide association studies (GWAS) on amyloid endophenotypes measured in cerebrospinal fluid (CSF) and positron emission tomography (PET) as surrogates of amyloid pathology, which may be helpful to understand the underlying biology of the disease. Methods: We performed a meta-analysis of GWAS of CSF Aß42 and PET measures combining six independent cohorts (n=2,076). Due to the opposite effect direction of Aß phenotypes in CSF and PET measures, only genetic signals in the opposite direction were considered for analysis (n=376,599). Polygenic risk scores (PRS) were calculated and evaluated for AD status and amyloid endophenotypes. We then searched the CSF proteome signature of brain amyloidosis using SOMAscan proteomic data (Ace cohort, n=1,008) and connected it with GWAS results of loci modulating amyloidosis. Finally, we compared our results with a large meta-analysis using publicly available datasets in CSF (n=13,409) and PET (n=13,116). This combined approach enabled the identification of overlapping genes and proteins associated with amyloid burden and the assessment of their biological significance using enrichment analyses. Results: After filtering the meta-GWAS, we observed genome-wide significance in the rs429358-APOE locus and nine suggestive hits were annotated. We replicated the APOE loci using the large CSF-PET meta-GWAS and identified multiple AD-associated genes as well as the novel GADL1 locus. Additionally, we found a significant association between the AD PRS and amyloid levels, whereas no significant association was found between any Aß PRS with AD risk. CSF SOMAscan analysis identified 1,387 FDR-significant proteins associated with CSF Aß42 levels. The overlap among GWAS loci and proteins associated with amyloid burden was very poor (n=35). The enrichment analysis of overlapping hits strongly suggested several signalling pathways connecting amyloidosis with the anchored component of the plasma membrane, synapse physiology and mental disorders that were replicated in the large CSF-PET meta-analysis. Conclusions: The strategy of combining CSF and PET amyloid endophenotypes GWAS with CSF proteome analyses might be effective for identifying signals associated with the AD pathological process and elucidate causative molecular mechanisms behind the amyloid mobilization in AD.

2.
Orphanet J Rare Dis ; 19(1): 327, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243101

RESUMO

The diagnostic odysseys for rare disease patients are getting shorter as next-generation sequencing becomes more widespread. However, the complex genetic diversity and factors influencing expressivity continue to challenge accurate diagnosis, leaving more than 50% of genetic variants categorized as variants of uncertain significance.Genomic expression intricately hinges on localized interactions among its products. Conventional variant prioritization, biased towards known disease genes and the structure-function paradigm, overlooks the potential impact of variants shaping the composition, location, size, and properties of biomolecular condensates, genuine membraneless organelles swiftly sensing and responding to environmental changes, and modulating expressivity.To address this complexity, we propose to focus on the nexus of genetic variants within biomolecular condensates determinants. Scrutinizing variant effects in these membraneless organelles could refine prioritization, enhance diagnostics, and unveil the molecular underpinnings of rare diseases. Integrating comprehensive genome sequencing, transcriptomics, and computational models can unravel variant pathogenicity and disease mechanisms, enabling precision medicine. This paper presents the rationale driving our proposal and describes a protocol to implement this approach. By fusing state-of-the-art knowledge and methodologies into the clinical practice, we aim to redefine rare diseases diagnosis, leveraging the power of scientific advancement for more informed medical decisions.


Assuntos
Doenças Raras , Humanos , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Raras/diagnóstico , Doenças Raras/genética
3.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125036

RESUMO

Fomitiporia species have aroused the interest of numerous investigations that reveal their biological activity and medicinal potential. The present investigation shows the antioxidant, anticancer, and immunomodulatory activity of acidic polysaccharides obtained from the fungus Fomitiporia chilensis. The acidic polysaccharides were obtained for acidic precipitation with 2% O-N-cetylpyridinium bromide. Chemical analysis was performed using FT-IR and GC-MS methods. The antioxidant capacity of acidic polysaccharides from F. chilensis was evaluated by scavenging free radicals with an ABTS assay. Macrophage proliferation and cytokine production assays were used to determine the immunomodulatory capacity of the polysaccharides. Anti-tumor and cytotoxicity activity was evaluated with an MTT assay in the U-937, HTC-116, and HGF-1 cell lines. The effect of polysaccharides on the cell cycle of the HCT-116 cell line was determined for flow cytometry. Fourier Transform-infrared characterization revealed characteristic absorption peaks for polysaccharides, whereas the GC-MS analysis detected three peaks corresponding to D-galactose, galacturonic acid, and D-glucose. The secreted TNF-α concentration was increased when the cell was treated with 2 mg mL-1 polysaccharides, whereas the IL-6 concentration was increased with all of the evaluated polysaccharide concentrations. A cell cycle analysis of HTC-116 treated with polysaccharides evidenced that the acidic polysaccharides from F. chilensis induce an increase in the G0/G1 cell cycle phase, increasing the apoptotic cell percentage. Results from a proteomic analysis suggest that some of the molecular mechanisms involved in their antioxidant and cellular detoxifying effects and justify their traditional use in heart diseases. Proteomic data are available through ProteomeXchange under identifier PXD048361. The study on acidic polysaccharides from F. chilensis has unveiled their diverse biological activities, including antioxidant, anticancer, and immunomodulatory effects. These findings underscore the promising therapeutic applications of acidic polysaccharides from F. chilensis, warranting further pharmaceutical and medicinal research exploration.


Assuntos
Antineoplásicos , Antioxidantes , Polissacarídeos Fúngicos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Animais , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Células HCT116 , Citocinas/metabolismo , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Espectroscopia de Infravermelho com Transformada de Fourier , Apoptose/efeitos dos fármacos
4.
J Agric Food Chem ; 72(23): 13023-13038, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809962

RESUMO

Extra virgin olive oil (EVOO), a staple of the Mediterranean diet, is rich in phenolic compounds recognized for their potent bioactive effects, including anticancer and anti-inflammatory properties. However, its effects on vascular health remain relatively unexplored. In this study, we examined the impact of a "picual" EVOO extract from Jaén, Spain, on endothelial cells. Proteomic analysis revealed the modulation of angiogenesis-related processes. In subsequent in vitro experiments, the EVOO extract inhibited endothelial cell migration, adhesion, invasion, ECM degradation, and tube formation while inducing apoptosis. These results provide robust evidence of the extract's antiangiogenic potential. Our findings highlight the potential of EVOO extracts in mitigating angiogenesis-related pathologies, such as cancer, macular degeneration, and diabetic retinopathy.


Assuntos
Inibidores da Angiogênese , Movimento Celular , Azeite de Oliva , Extratos Vegetais , Proteômica , Azeite de Oliva/química , Humanos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Movimento Celular/efeitos dos fármacos , Olea/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Apoptose/efeitos dos fármacos , Espanha , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos
5.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732529

RESUMO

The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.


Assuntos
Inibidores da Angiogênese , Azeite de Oliva , Fenóis , Álcool Feniletílico , Azeite de Oliva/química , Humanos , Fenóis/farmacologia , Inibidores da Angiogênese/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Dieta Mediterrânea , Aterosclerose/prevenção & controle , Aterosclerose/tratamento farmacológico , Monoterpenos Ciclopentânicos , Neoplasias/prevenção & controle , Neoplasias/tratamento farmacológico , Catecóis/farmacologia , Aldeídos/farmacologia , Animais , Antineoplásicos/farmacologia , Anti-Inflamatórios/farmacologia
7.
Cell Rep ; 42(10): 113302, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37862167

RESUMO

During metastasis, tumor cells invade through the basement membrane and intravasate into blood vessels and then extravasate into distant organs to establish metastases. Here, we report a critical role of a transmembrane serine protease fibroblast activation protein (FAP) in tumor metastasis. Expression of FAP and TWIST1, a metastasis driver, is significantly correlated in several types of human carcinomas, and FAP is required for TWIST1-induced breast cancer metastasis to the lung. Mechanistically, FAP is localized at invadopodia and required for invadopodia-mediated extracellular matrix degradation independent of its proteolytic activity. Live cell imaging shows that association of invadopodia precursors with FAP at the cell membrane promotes the stabilization and growth of invadopodia precursors into mature invadopodia. Together, our study identified FAP as a functional target of TWIST1 in driving tumor metastasis via promoting invadopodia-mediated matrix degradation and uncovered a proteolytic activity-independent role of FAP in stabilizing invadopodia precursors for maturation.


Assuntos
Neoplasias da Mama , Podossomos , Humanos , Feminino , Podossomos/metabolismo , Linhagem Celular Tumoral , Peptídeo Hidrolases/metabolismo , Invasividade Neoplásica/patologia , Neoplasias da Mama/patologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Fibroblastos/metabolismo , Matriz Extracelular/metabolismo , Melanoma Maligno Cutâneo
8.
Commun Biol ; 6(1): 1084, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880317

RESUMO

Dimethyl fumarate is an ester from the Krebs cycle intermediate fumarate. This drug is approved and currently used for the treatment of psoriasis and multiple sclerosis, and its anti-angiogenic activity was reported some years ago. Due to the current clinical relevance of this compound and the recently manifested importance of endothelial cell metabolism on the angiogenic switch, we wanted to elucidate whether dimethyl fumarate has an effect on energetic metabolism of endothelial cells. Different experimental approximations were performed in endothelial cells, including proteomics, isotope tracing and metabolomics experimental approaches, in this work we studied the possible role of dimethyl fumarate in endothelial cell energetic metabolism. We demonstrate for the first time that dimethyl fumarate promotes glycolysis and diminishes cell respiration in endothelial cells, which could be a consequence of a down-regulation of serine and glycine synthesis through inhibition of PHGDH activity in these cells. Dimethyl fumarate alters the energetic metabolism of endothelial cells in vitro and in vivo through an unknown mechanism, which could be the cause or the consequence of its pharmacological activity. This new discovery on the targets of this compound could open a new field of study regarding the mechanism of action of dimethyl fumarate.


Assuntos
Fumarato de Dimetilo , Esclerose Múltipla , Humanos , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Células Endoteliais/metabolismo , Fumaratos/farmacologia , Fumaratos/uso terapêutico , Regulação para Baixo
10.
Neurobiol Dis ; 187: 106312, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769747

RESUMO

Alzheimer's disease is the most common type of dementia in the elderly. It is a progressive degenerative disorder that may begin to develop up to 15 years before clinical symptoms appear. The identification of early biomarkers is crucial to enable a prompt diagnosis and to start effective interventions. In this work, we conducted a metabolomic study using proton Nuclear Magnetic Resonance (1H NMR) spectroscopy in serum samples from patients with neuropathologically confirmed Alzheimer's disease (AD, n = 51), mild cognitive impairment (MCI, n = 27), and cognitively healthy controls (HC, n = 50) to search for metabolites that could be used as biomarkers. Patients and controls underwent yearly clinical follow-ups for up to six years. MCI group included samples from three subgroups of subjects with different disease progression rates. The first subgroup included subjects that remained clinically stable at the MCI stage during the period of study (stable MCI, S-MCI, n = 9). The second subgroup accounted for subjects which were diagnosed with MCI at the moment of blood extraction, but progressed to clinical dementia in subsequent years (MCI-to-dementia, MCI-D, n = 14). The last subgroup was composed of subjects that had been diagnosed as dementia for the first time at the moment of sample collection (incipient dementia, Incp-D, n = 4). Partial Least Square Discriminant Analysis (PLS-DA) models were developed. Three models were obtained, one to discriminate between AD and HC samples with high sensitivity (93.75%) and specificity (94.75%), another model to discriminate between AD and MCI samples (100% sensitivity and 82.35% specificity), and a last model to discriminate HC and MCI with lower sensitivity and specificity (67% and 50%). Differences within the MCI group were further studied in an attempt to determine those MCI subjects that could develop AD-type dementia in the future. The relative concentration of metabolites, and metabolic pathways were studied. Alterations in the pathways of alanine, aspartate and glutamate metabolism, pantothenate and CoA biosynthesis, and beta-alanine metabolism, were found when HC and MCI- D patients were compared. In contrast, no pathway was found disturbed in the comparison of S-MCI with HC groups. These results highlight the potential of 1H NMR metabolomics to support the diagnosis of dementia in a less invasive way, and set a starting point for the study of potential biomarkers to identify MCI or HC subjects at risk of developing AD in the future.

11.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627508

RESUMO

Hydroxytyrosol (HT) is a bioactive phenolic compound naturally present in olives and extra virgin olive oil (EVOO) which is described as an antioxidant, antitumoral and antiangiogenic molecule. Previous studies of semi-synthetic HT-derivatives presented the hydroxytyrosyl alkyl ether HT-C6 as one of the most potent derivatives studied in the context of antioxidant, anti-platelet and antiangiogenic assays, but its direct effect on inflammation was not reported. In this work, we use RT-qPCR measure of gene expression, protein analysis by Western-blot and immunofluorescence techniques, adhesion and migration functional assays and single-cell monitoring of reactive oxygen species (ROS) in order to explore in vitro the ability of HT-C6 to interfere in the inflammatory response of endothelial cells (ECs). Our results showed that HT-C6 strongly reduces the TNF-α-induced expression of vascular cell adhesion molecule 1 (VCAM1), intercellular cell adhesion molecule 1 (ICAM1), E-selectin (SELE), C-C motif chemokine ligand 2 and 5 (CCL2 and CCL5) in HUVECs, impairing the chemotactic and adhesion potential of these cells towards THP-1 monocytes in vitro. In this work, we define a mechanism of action underlying the anti-inflammatory effect of HT-C6, which involves the abrogation of nuclear factor kappa B (NF-κB) pathway activation in ECs. These results, together with the ability of HT-C6 to reduce ROS formation in ECs, point to this compound as a promising HT-derivative to be tested in the treatment of atherosclerosis.

12.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37627547

RESUMO

Pyroptosis is an inflammation-dependent type of cell death that has been in the spotlight for the scientific community in the last few years. Crucial players in the process of pyroptosis are the members of the gasdermin family of proteins, which have been parallelly studied. Upon induction of pyroptosis, gasdermins suffer from structural changes leading to the formation of pores in the membrane that subsequently cause the release of pro-inflammatory contents. Recently, it has been discovered that oxidation plays a key role in the activation of certain gasdermins. Here, we review the current knowledge on pyroptosis and human gasdermins, focusing on the description of the different members of the family, their molecular structures, and their influence on health and disease directly or non-directly related to inflammation. Noteworthy, we have focused on the existing understanding of the role of this family of proteins in cancer, which could translate into novel promising strategies aimed at benefiting human health. In conclusion, the modulation of pyroptosis and gasdermins by natural and synthetic compounds through different mechanisms, including modification of the redox state of cells, has been proven effective and sets precedents for future therapeutic strategies.

13.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569395

RESUMO

Graviola (Annona muricata) is a tropical plant with many traditional ethnobotanic uses and pharmacologic applications. A metabolomic study of both aqueous and DMSO extracts from Annona muricata leaves recently allowed us to identify dozens of bioactive compounds. In the present study, we use a proteomic approach to detect altered patterns in proteins on both conditioned media and extracts of HT-1080 fibrosarcoma cells under treatment conditions, revealing new potential bioactivities of Annona muricata extracts. Our results reveal the complete sets of deregulated proteins after treatment with aqueous and DMSO extracts from Annona muricata leaves. Functional enrichment analysis of proteomic data suggests deregulation of cell cycle and iron metabolism, which are experimentally validated in vitro. Additional experimental data reveal that DMSO extracts protect HT-1080 fibrosarcoma cells and HMEC-1 endothelial cells from ferroptosis. Data from our proteomic study are available via ProteomeXchange with identifier PXD042354.

14.
Lancet Healthy Longev ; 4(8): e374-e385, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454673

RESUMO

BACKGROUND: Cognitive abilities, particularly memory, normally decline with age. However, some individuals, often designated as superagers, can reach late life with the memory function of individuals 30 years younger. We aimed to characterise the brain structure of superagers and identify demographic, lifestyle, and clinical factors associated with this phenotype. METHODS: We selected cognitively healthy participants from the Vallecas Project longitudinal cohort recruited between Oct 10, 2011, and Jan 14, 2014, aged 79·5 years or older, on the basis of their delayed verbal episodic memory score. Participants were assessed with the Free and Cued Selective Reminding Test and with three non-memory tests (the 15-item version of the Boston Naming Test, the Digit Symbol Substitution Test, and the Animal Fluency Test). Participants were classified as superagers if they scored at or above the mean values for a 50-56-year-old in the Free and Cued Selective Reminding Test and within one standard deviation of the mean or above for their age and education level in the three non-memory tests, or as typical older adults if they scored within one standard deviation of the mean for their age and education level in the Free and Cued Selective Reminding Test. Data acquired as per protocol from up to six yearly follow-ups were used for longitudinal analyses. FINDINGS: We included 64 superagers (mean age 81·9 years; 38 [59%] women and 26 [41%] men) and 55 typical older adults (82·4 years; 35 [64%] women and 20 [36%] men). The median number of follow-up visits was 5·0 (IQR 5·0-6·0) for superagers and 5·0 (4·5-6·0) for typical older adults. Superagers exhibited higher grey matter volume cross-sectionally in the medial temporal lobe, cholinergic forebrain, and motor thalamus. Longitudinally, superagers also showed slower total grey matter atrophy, particularly within the medial temporal lobe, than did typical older adults. A machine learning classification including 89 demographic, lifestyle, and clinical predictors showed that faster movement speed (despite no group differences in exercise frequency) and better mental health were the most differentiating factors for superagers. Similar concentrations of dementia blood biomarkers in superager and typical older adult groups suggest that group differences reflect inherent superager resistance to typical age-related memory loss. INTERPRETATION: Factors associated with dementia prevention are also relevant for resistance to age-related memory decline and brain atrophy, and the association between superageing and movement speed could provide potential novel insights into how to preserve memory function into the ninth decade. FUNDING: Queen Sofia Foundation, CIEN Foundation, Spanish Ministry of Science and Innovation, Alzheimer's Association, European Research Council, MAPFRE Foundation, Carl Zeiss Foundation, and the EU Comission for Horizon 2020. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Assuntos
Encéfalo , Demência , Feminino , Masculino , Humanos , Encéfalo/patologia , Cognição , Fenótipo , Atrofia/patologia
15.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446074

RESUMO

Over the last few years, intense research efforts have been made to anticipate or improve the diagnosis of Alzheimer's disease by detecting blood biomarkers. However, the most promising blood biomarkers identified to date have some limitations, most of them related to the techniques required for their detection. Hence, new blood biomarkers should be identified to improve the diagnosis of AD, better discriminate between AD and mild cognitive impairment (MCI) and identify cognitively unimpaired (CU) older individuals at risk for progression to AD. Our previous studies demonstrated that both the purinergic receptor P2X7 and the tissue-nonspecific alkaline phosphatase ectoenzyme (TNAP) are upregulated in the brains of AD patients. Since both proteins are also present in plasma, we investigated whether plasma P2X7R and TNAP are altered in MCI and AD patients and, if so, their potential role as AD biomarkers. We found that AD but not MCI patients present increased plasma P2X7R levels. Nevertheless, TNAP plasma activity was increased in MCI patients and decreased in the AD group. ROC curve analysis indicated that measuring both parameters has a reasonable discriminating capability to diagnose MCI and AD conditions. In addition to confirming that individuals progressing to MCI have increased TNAP activity in plasma, longitudinal studies also revealed that CU individuals have lower plasma TNAP activity than stable controls. Thus, we propose that P2X7 and TNAP could serve as new plasma biomarkers for MCI and AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Fosfatase Alcalina , Biomarcadores , Disfunção Cognitiva/diagnóstico , Estudos Longitudinais , Peptídeos beta-Amiloides , Progressão da Doença , Proteínas tau
16.
Biomed Pharmacother ; 165: 115234, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37523982

RESUMO

Phenolic compounds play a key role in the health benefits of Extra Virgin Olive Oil (EVOO). Among these molecules, the focus has been recently put on (-)-oleocanthal and (-)-oleacein, for which anti-cancer and angiogenesis-related findings have been reported. Here, we explored the modulatory action of (-)-oleocanthal and (-)-oleacein on angiogenesis, the process by which new vessels are created from pre-existent ones, which is directly linked to tumor progression and other pathological conditions. Two in vivo models strongly sustained by angiogenesis, and an in vitro model of endothelial cells to study different steps of angiogenesis, were used. In vivo evidence pointed to the anti-angiogenic effects of both compounds in vivo. In vitro, (-)-oleacein and (-)-oleocanthal inhibited the proliferation, invasion, and tube formation of endothelial cells, and (-)-oleacein significantly repressed migration and induced apoptosis in these cells. Mechanistically, the compounds modulated signaling pathways related to survival and proliferation, all at concentrations of physiological relevance for humans. We propose (-)-oleacein and (-)-oleocanthal as good candidates for angioprevention and for further studies as modulators of angiogenesis in clinical interventions, and as interesting functional claims for the food industry. Chemical compounds studied in this article: Oleocanthal (PubChem CID: 11652416); Oleacein (PubChem CID: 18684078).


Assuntos
Células Endoteliais , Fenóis , Humanos , Azeite de Oliva/química , Fenóis/farmacologia , Fenóis/análise , Aldeídos/farmacologia
17.
J Biomed Inform ; 144: 104421, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315831

RESUMO

Angiogenesis is essential for tumor growth and cancer metastasis. Identifying the molecular pathways involved in this process is the first step in the rational design of new therapeutic strategies to improve cancer treatment. In recent years, RNA-seq data analysis has helped to determine the genetic and molecular factors associated with different types of cancer. In this work we performed integrative analysis using RNA-seq data from human umbilical vein endothelial cells (HUVEC) and patients with angiogenesis-dependent diseases to find genes that serve as potential candidates to improve the prognosis of tumor angiogenesis deregulation and understand how this process is orchestrated at the genetic and molecular level. We downloaded four RNA-seq datasets (including cellular models of tumor angiogenesis and ischaemic heart disease) from the Sequence Read Archive. Our integrative analysis includes a first step to determine differentially and co-expressed genes. For this, we used the ExpHunter Suite, an R package that performs differential expression, co-expression and functional analysis of RNA-seq data. We used both differentially and co-expressed genes to explore the human gene interaction network and determine which genes were found in the different datasets that may be key for the angiogenesis deregulation. Finally, we performed drug repositioning analysis to find potential targets related to angiogenesis inhibition. We found that that among the transcriptional alterations identified, SEMA3D and IL33 genes are deregulated in all datasets. Microenvironment remodeling, cell cycle, lipid metabolism and vesicular transport are the main molecular pathways affected. In addition to this, interacting genes are involved in intracellular signaling pathways, especially in immune system and semaphorins, respiratory electron transport and fatty acid metabolism. The methodology presented here can be used for finding common transcriptional alterations in other genetically-based diseases.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Perfilação da Expressão Gênica/métodos , Células Endoteliais , Transdução de Sinais/genética
18.
Educ Inf Technol (Dordr) ; : 1-22, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37361824

RESUMO

The first people considered digital natives, the millennials, have already entered the teaching profession. As a result, we are faced with a remarkable generational diversity. This survey aimed to explore the generational change in teachers and the beginning of the incorporation of the first millennials (digital natives) into teaching. It was carried out through a qualitative study using focus groups and interviews with a total of 147 teachers. The main results found establish a generational clash between migrants and digital natives. This difference is present in the use and understanding of ICTs in the teaching task across the different teaching generations and in a generational diversity within the educational centres that has not been seen so far. However, this difference between teachers is also a condition that facilitates exchange between teachers of different generations. Junior teachers help veteran teachers in the use of ICTs and veteran teachers provide the expertise that new recruits lack.

19.
Antioxidants (Basel) ; 12(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37237967

RESUMO

The role played by a sustained angiogenesis in cancer and other diseases stimulates the interest in the search for new antiangiogenic drugs. In this manuscript, we provide evidence that 1,8- dihydroxy-9,10-anthraquinone (danthron), isolated from the fermentation broth of the marine fungus Chromolaenicola sp. (HL-114-33-R04), is a new inhibitor of angiogenesis. The results obtained with the in vivo CAM assay indicate that danthron is a potent antiangiogenic compound. In vitro studies with human umbilical endothelial cells (HUVEC) reveal that this anthraquinone inhibits certain key functions of activated endothelial cells, including proliferation, proteolytic and invasive capabilities and tube formation. In vitro studies with human breast carcinoma MDA-MB231 and fibrosarcoma HT1080 cell lines suggest a moderate antitumor and antimetastatic activity of this compound. Antioxidant properties of danthron are evidenced by the observation that it reduces the intracellular reactive oxygen species production and increases the amount of intracellular sulfhydryl groups in endothelial and tumor cells. These results support a putative role of danthron as a new antiangiogenic drug with potential application in the treatment and angioprevention of cancer and other angiogenesis-dependent diseases.

20.
Isotopes Environ Health Stud ; 59(1): 48-65, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36755410

RESUMO

A hydro-geochemical characterization was conducted in the northern part of the Sonora River basin, covering an area of 9400 km2. Equipotential lines indicated that groundwater circulation coincided with the surface water flow direction. Based on the groundwater temperature measured (on average ∼21 °C), only one spring exhibited thermalism (51 °C). Electrical conductivity (160-1750 µS/cm), chloride and nitrate concentrations (>10 and >45 mg/L) imply highly ionized water and anthropogenic pollution. In the river network, δ18O values revealed a clear modern meteoric origin. Focused recharge occurred mainly from the riverbeds during the rainy season. During the dry season, diffuse recharge was characterized by complex return flows from irrigation, urban, agricultural, mining, and livestock. Drilled wells (>50 m) exhibited a strong meteoric origin from higher elevations during the rainy season with minimal hydrochemical anomalies. Our results contribute to the knowledge of mountain-front and mountain-block recharge processes in a semi-arid and human-altered landscape in northern Mexico, historically characterized by limited hydrogeological data.


Assuntos
Água Subterrânea , Rios , Humanos , Rios/química , México , Monitoramento Ambiental/métodos , Isótopos/análise , Água Subterrânea/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA