Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vitam Horm ; 126: 77-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39029977

RESUMO

Sleep is a physiological process that preserves the integrity of the neuro-immune-endocrine network to maintain homeostasis. Sleep regulates the production and secretion of hormones, neurotransmitters, cytokines and other inflammatory mediators, both at the central nervous system (CNS) and at the periphery. Sleep promotes the removal of potentially toxic metabolites out of the brain through specialized systems such as the glymphatic system, as well as the expression of specific transporters in the blood-brain barrier. The blood-brain barrier maintains CNS homeostasis by selectively transporting metabolic substrates and nutrients into the brain, by regulating the efflux of metabolic waste products, and maintaining bidirectional communication between the periphery and the CNS. All those processes are disrupted during sleep loss. Brain endothelial cells express the blood-brain barrier phenotype, which arises after cell-to-cell interactions with mural cells, like pericytes, and after the release of soluble factors by astroglial endfeet. Astroglia, pericytes and brain endothelial cells respond differently to sleep loss; evidence has shown that sleep loss induces a chronic low-grade inflammatory state at the CNS, which is associated with blood-brain barrier dysfunction. In animal models, blood-brain barrier dysfunction is characterized by increased blood-brain barrier permeability, decreased tight junction protein expression and pericyte detachment from the capillary wall. Blood-brain barrier dysfunction may promote defects in brain clearance of potentially neurotoxic metabolites and byproducts of neural physiology, which may eventually contribute to neurodegenerative diseases. This chapter aims to describe the cellular and molecular mechanisms by which sleep loss modifies the function of the blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Privação do Sono , Barreira Hematoencefálica/metabolismo , Humanos , Animais , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Células Endoteliais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA