Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(7): 3384-3391, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32070107

RESUMO

Vibrational excitations provoked by coupling effects during charge transport through single molecules are intrinsic energy dissipation phenomena, in close analogy to electron-phonon coupling in solids. One fundamental challenge in molecular electronics is the quantitative determination of charge-vibrational (electron-phonon) coupling for single-molecule junctions. The ability to record electron-phonon coupling phenomena at the single-molecule level is a key prerequisite to fully rationalize and optimize charge-transport efficiencies for specific molecular configurations and currents. Here we exemplarily determine the pertaining coupling characteristics for a current-carrying chemically well-defined molecule by synchronous vibrational and current-voltage spectroscopy. These metal-molecule-metal junction insights are complemented by time-resolved infrared spectroscopy to assess the intramolecular vibrational relaxation dynamics. By measuring and analyzing the steady-state vibrational distribution during transient charge transport in a bis-phenylethynyl-anthracene derivative using anti-Stokes Raman scattering, we find ∼0.5 vibrational excitations per elementary charge passing through the metal-molecule-metal junction, by means of a rate model ansatz and quantum-chemical calculations.

2.
J Am Chem Soc ; 140(25): 7803-7809, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29779378

RESUMO

Among organic electronic materials, graphene nanoribbons (GNRs) offer extraordinary versatility as next-generation semiconducting materials for nanoelectronics and optoelectronics due to their tunable properties, including charge-carrier mobility, optical absorption, and electronic bandgap, which are uniquely defined by their chemical structures. Although planar GNRs have been predominantly considered until now, nonplanarity can be an additional parameter to modulate their properties without changing the aromatic core. Herein, we report theoretical and experimental studies on two GNR structures with "cove"-type edges, having an identical aromatic core but with alkyl side chains at different peripheral positions. The theoretical results indicate that installment of alkyl chains at the innermost positions of the "cove"-type edges can "bend" the peripheral rings of the GNR through steric repulsion between aromatic protons and the introduced alkyl chains. This structural distortion is theoretically predicted to reduce the bandgap by up to 0.27 eV, which is corroborated by experimental comparison of thus synthesized planar and nonplanar GNRs through UV-vis-near-infrared absorption and photoluminescence excitation spectroscopy. Our results extend the possibility of engineering GNR properties, adding subtle structural distortion as a distinct and potentially highly versatile parameter.

3.
Adv Mater ; 27(8): 1426-31, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25641369

RESUMO

A switchable diode in a 2D semiconductor-molecular junction heterostructure is reported. MoS2 is exfoliated on top of a monolayer of azobenzene-substituted thiols on gold. Photoisomerization of the azobenzenes results in switching between a rectifier with rectifying ratios of 10(4) and a conductive state, as revealed by conducting atomic force microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA