Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 35(32): 11346-57, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26269641

RESUMO

Much of the molecular understanding of synaptic pathology in Alzheimer's disease (AD) comes from studies of various mouse models that express familial AD (FAD)-linked mutations, often in combinations. Most studies compare the absolute magnitudes of long-term potentiation (LTP) and long-term depression (LTD) to assess deficits in bidirectional synaptic plasticity accompanying FAD-linked mutations. However, LTP and LTD are not static, but their induction threshold is adjusted by overall neural activity via metaplasticity. Hence LTP/LTD changes in AD mouse models may reflect defects in metaplasticity processes. To determine this, we examined the LTP/LTD induction threshold in APPswe;PS1ΔE9 transgenic (Tg) mice across two different ages. We found that in young Tg mice (1 month), LTP is enhanced at the expense of LTD, but in adults (6 months), the phenotype is reversed to promote LTD and reduce LTP, compared to age-matched wild-type (WT) littermates. The apparent opposite phenotype across age was due to an initial offset in the induction threshold to favor LTP and the inability to undergo developmental metaplasticity in Tg mice. In WTs, the synaptic modification threshold decreased over development to favor LTP and diminish LTD in adults. However, in Tg mice, the magnitudes of LTP and LTD stayed constant across development. The initial offset in LTP/LTD threshold in young Tg mice did not accompany changes in the LTP/LTD induction mechanisms, but altered AMPA receptor phosphorylation and appearance of Ca(2+)-permeable AMPA receptors. We propose that the main synaptic defect in AD mouse models is due to their inability to undergo developmental metaplasticity. SIGNIFICANCE STATEMENT: This work offers a new insight that metaplasticity defects are central to synaptic dysfunctions seen in AD mouse models. In particular, we demonstrate that the apparent differences in LTP/LTD magnitude seen across ages in AD transgenic mouse models reflect the inability to undergo a normal developmental shift in metaplasticity.


Assuntos
Doença de Alzheimer/fisiopatologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Fatores Etários , Doença de Alzheimer/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Fosforilação , Receptores de AMPA/metabolismo
2.
PLoS One ; 9(3): e92279, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637500

RESUMO

Beta-amyloid precursor protein cleaving enzyme 1 (BACE1), a major neuronal ß-secretase critical for the formation of ß-amyloid (Aß) peptide, is considered one of the key therapeutic targets that can prevent the progression of Alzheimer's disease (AD). Although a complete ablation of BACE1 gene prevents Aß formation, we previously reported that BACE1 knockouts (KOs) display presynaptic deficits, especially at the mossy fiber (MF) to CA3 synapses. Whether the defect is specific to certain inputs or postsynaptic targets in CA3 is unknown. To determine this, we performed whole-cell recording from pyramidal cells (PYR) and the stratum lucidum (SL) interneurons in the CA3, both of which receive excitatory MF terminals with high levels of BACE1 expression. BACE1 KOs displayed an enhancement of paired-pulse facilitation at the MF inputs to CA3 PYRs without changes at the MF inputs to SL interneurons, which suggests postsynaptic target specific regulation. The synaptic dysfunction in CA3 PYRs was not restricted to excitatory synapses, as seen by an increase in the paired-pulse ratio of evoked inhibitory postsynaptic currents from SL to CA3 PYRs. In addition to the changes in evoked synaptic transmission, BACE1 KOs displayed a reduction in the frequency of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) in CA3 PYRs without alteration in mEPSCs recorded from SL interneurons. This suggests that the impairment may be more global across diverse inputs to CA3 PYRs. Our results indicate that the synaptic dysfunctions seen in BACE1 KOs are specific to the postsynaptic target, the CA3 PYRs, independent of the input type.


Assuntos
Secretases da Proteína Precursora do Amiloide/deficiência , Ácido Aspártico Endopeptidases/deficiência , Região CA3 Hipocampal/patologia , Região CA3 Hipocampal/fisiopatologia , Sinapses/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Potenciais Evocados , Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Interneurônios/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/fisiopatologia , Células Piramidais/patologia
3.
J Neurosci ; 33(31): 12670-8, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23904603

RESUMO

The impact of aging on cognitive capabilities varies among individuals ranging from significant impairment to preservation of function on par with younger adults. Research on the neural basis for age-related memory decline has focused primarily on the CA1 region of the hippocampus. However, recent studies in elderly human and rodents indicate that individual differences in cognitive aging are more strongly tied to functional alterations in CA3 circuits. To examine synaptic plasticity in the CA3 region, we used aged rats behaviorally characterized in a hippocampal-dependent task to evaluate the status of long-term potentiation and long-term depression (LTP and LTD) in the associative/commissural pathway (A/C → CA3), which provides the majority of excitatory input to CA3 pyramidal neurons. We found that, unlike in CA1 synapses, in A/C → CA3 LTP is minimally affected by age. However, two forms of LTD, involving NMDA and metabotropic glutamate receptors (mGluR), are both greatly reduced in age-impaired rats. Age-unimpaired rats, in contrast, had intact mGluR LTD. These findings indicate that the integrity of mGluR-LTD at A/C → CA3 inputs may play a crucial role in maintaining the performance of CA3 circuitry in aging.


Assuntos
Envelhecimento/fisiologia , Região CA3 Hipocampal/citologia , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Fatores Etários , Animais , Biofísica , Ciclopropanos/farmacologia , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Inibição Neural , Células Piramidais , Ratos , Ratos Long-Evans , Receptores de Glutamato Metabotrópico/metabolismo , Natação
4.
J Neurosci ; 33(22): 9306-18, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23719799

RESUMO

The tetra(ethylene glycol) derivative of benzothiazole aniline, BTA-EG4, is a novel amyloid-binding small molecule that can penetrate the blood-brain barrier and protect cells from Aß-induced toxicity. However, the effects of Aß-targeting molecules on other cellular processes, including those that modulate synaptic plasticity, remain unknown. We report here that BTA-EG4 decreases Aß levels, alters cell surface expression of amyloid precursor protein (APP), and improves memory in wild-type mice. Interestingly, the BTA-EG4-mediated behavioral improvement is not correlated with LTP, but with increased spinogenesis. The higher dendritic spine density reflects an increase in the number of functional synapses as determined by increased miniature EPSC (mEPSC) frequency without changes in presynaptic parameters or postsynaptic mEPSC amplitude. Additionally, BTA-EG4 requires APP to regulate dendritic spine density through a Ras signaling-dependent mechanism. Thus, BTA-EG4 may provide broad therapeutic benefits for improving neuronal and cognitive function, and may have implications in neurodegenerative disease therapy.


Assuntos
Compostos de Anilina/farmacologia , Benzotiazóis/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Etilenoglicóis/farmacologia , Genes ras/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Animais , Biotinilação , Células COS , Circulação Cerebrovascular/efeitos dos fármacos , Chlorocebus aethiops , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Ensaio de Imunoadsorção Enzimática , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Imuno-Histoquímica , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Receptores de AMPA/efeitos dos fármacos
5.
Neural Plast ; 2012: 272374, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792491

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated ß-amyloid (Aß) peptides. It is now recognized that soluble Aß oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aß is produced by a sequential cleavage of amyloid precursor protein (APP) by the activity of ß- and γ-secretases, which have been identified as major candidate therapeutic targets of AD. This paper focuses on how Aß alters synaptic function and the functional consequences of inhibiting the activity of the two secretases responsible for Aß generation. Abnormalities in synaptic function resulting from the absence or inhibition of the Aß-producing enzymes suggest that Aß itself may have normal physiological functions which are disrupted by abnormal accumulation of Aß during AD pathology. This interpretation suggests that AD therapeutics targeting the ß- and γ-secretases should be developed to restore normal levels of Aß or combined with measures to circumvent the associated synaptic dysfunction(s) in order to have minimal impact on normal synaptic function.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Inibidores Enzimáticos/farmacologia , Plasticidade Neuronal/fisiologia , Sinapses/enzimologia , Sinapses/fisiologia , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/fisiologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/fisiologia , Humanos , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Presenilinas/genética , Presenilinas/fisiologia
6.
PLoS One ; 6(3): e18264, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21483826

RESUMO

Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+)-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Privação Sensorial/fisiologia , Sinapses/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Técnicas In Vitro , Camundongos , Plasticidade Neuronal/genética , Fosforilação , Receptores de AMPA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA