Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Lipid Res ; 63(3): 100179, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151662

RESUMO

Cisplatin is a commonly used chemotherapeutic for the treatment of many solid organ cancers; however, its effectiveness is limited by the development of acute kidney injury (AKI) in 30% of patients. AKI is driven by proximal tubule cell death, leading to rapid decline in renal function. It has previously been shown that sphingolipid metabolism plays a role in regulating many of the biological processes involved in cisplatin-induced AKI. For example, neutral ceramidase (nCDase) is an enzyme responsible for converting ceramide into sphingosine, which is then phosphorylated to become sphingosine-1-phosphate, and our lab previously demonstrated that nCDase knockout (nCDase-/-) in mouse embryonic fibroblasts led to resistance to nutrient and energy deprivation-induced cell death via upregulation of autophagic flux. In this study, we further characterized the role of nCDase in AKI by demonstrating that nCDase-/- mice are resistant to cisplatin-induced AKI. nCDase-/- mice display improved kidney function, reduced injury and structural damage, lower rates of apoptosis, and less ER stress compared to wild-type mice following cisplatin treatment. Although the mechanism of protection is still unknown, we propose that it could be mediated by increased autophagy, as chloroquine treatment resensitized nCDase-/- mice to AKI development. Taken together, we conclude that nCDase may represent a novel target to prevent cisplatin-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda , Lipogranulomatose de Farber , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose/fisiologia , Cisplatino/efeitos adversos , Fibroblastos/metabolismo , Humanos , Camundongos , Ceramidase Neutra/metabolismo
2.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884479

RESUMO

Ischemia-induced mitochondrial dysfunction and ATP depletion in the kidney result in disruption of primary functions and acute injury of the kidney. This study tested whether γ-tocotrienol (GTT), a member of the vitamin E family, protects mitochondrial function, reduces ATP deficits, and improves renal functions and survival after ischemia/reperfusion injury. Vehicle or GTT (200 mg/kg) were administered to mice 12 h before bilateral kidney ischemia, and endpoints were assessed at different timepoints of reperfusion. GTT treatment reduced decreases in state 3 respiration and accelerated recovery of this function after ischemia. GTT prevented decreases in activities of complexes I and III of the respiratory chain, and blocked ischemia-induced decreases in F0F1-ATPase activity and ATP content in renal cortical tissue. GTT improved renal morphology at 72 h after ischemia, reduced numbers of necrotic proximal tubular and inflammatory cells, and enhanced tubular regeneration. GTT treatment ameliorated increases in plasma creatinine levels and accelerated recovery of creatinine levels after ischemia. Lastly, 89% of mice receiving GTT and 70% of those receiving vehicle survived ischemia. Conclusions: Our data show novel observations that GTT administration improves mitochondrial respiration, prevents ATP deficits, promotes tubular regeneration, ameliorates decreases in renal functions, and increases survival after acute kidney injury in mice.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cromanos/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Vitamina E/análogos & derivados , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Vitamina E/farmacologia
3.
Am J Physiol Renal Physiol ; 319(4): F674-F685, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830540

RESUMO

C57BL/6 mice are one of the most commonly used mouse strains in research, especially in kidney injury studies. However, C57BL/6 mice are resistant to chronic kidney disease-associated pathologies, particularly the development of glomerulosclerosis and interstitial fibrosis. Our laboratory and others developed a more clinically relevant dosing regimen of cisplatin (7 mg/kg cisplatin once a week for 4 wk and mice euthanized at day 24) that leads to the development of progressive kidney fibrosis in FVB/n mice. However, we found that treating C57BL/6 mice with this same dosing regimen does not result in kidney fibrosis. In this study, we demonstrated that increasing the dose of cisplatin to 9 mg/kg once a week for 4 wk is sufficient to consistently induce fibrosis in C57BL/6 mice while maintaining animal survival. In addition, we present that cohorts of C57BL/6 mice purchased from Jackson 1 yr apart and mice bred in-house display variability in renal outcomes following repeated low-dose cisplatin treatment. Indepth analyses of this intra-animal variability revealed C-C motif chemokine ligand 2 as a marker of cisplatin-induced kidney injury through correlation studies. In addition, significant immune cell infiltration was observed in the kidney after four doses of 9 mg/kg cisplatin, contrary to what has been previously reported. These results indicate that multiple strains of mice can be used with our repeated low-dose cisplatin model with dose optimization. Results also indicate that littermate control mice should be used with this model to account for population variability.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Quimiocina CCL2/metabolismo , Cisplatino , Rim/metabolismo , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose , Quimiocina CCL2/genética , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Fibrose , Rim/imunologia , Rim/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Necrose , Transdução de Sinais , Especificidade da Espécie
4.
Biomolecules ; 10(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290153

RESUMO

Voltage-dependent anion channels (VDACs) constitute major transporters mediating bidirectional movement of solutes between cytoplasm and mitochondria. We aimed to determine if VDAC1 plays a role in recovery of mitochondrial and kidney functions after ischemia-induced acute kidney injury (AKI). Kidney function decreased after ischemia and recovered in wild-type (WT), but not in VDAC1-deficient mice. Mitochondrial maximum respiration, activities of respiratory complexes and FoF1-ATPase, and ATP content in renal cortex decreased after ischemia and recovered in WT mice. VDAC1 deletion reduced respiration and ATP content in non-injured kidneys. Further, VDAC1 deletion blocked return of activities of respiratory complexes and FoF1-ATPase, and recovery of respiration and ATP content after ischemia. Deletion of VDAC1 exacerbated ischemia-induced mitochondrial fission, but did not aggravate morphological damage to proximal tubules after ischemia. However, VDAC1 deficiency impaired recovery of kidney morphology and increased renal interstitial collagen accumulation. Thus, our data show a novel role for VDAC1 in regulating renal mitochondrial dynamics and recovery of mitochondrial function and ATP levels after AKI. We conclude that the presence of VDAC1 (1) stimulates capacity of renal mitochondria for respiration and ATP production, (2) reduces mitochondrial fission, (3) promotes recovery of mitochondrial function and dynamics, renal morphology, and kidney functions, and (4) increases survival after AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Deleção de Genes , Rim/patologia , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular , Transporte de Elétrons , Isquemia/patologia , Isquemia/fisiopatologia , Córtex Renal/metabolismo , Córtex Renal/patologia , Córtex Renal/fisiopatologia , Testes de Função Renal , Camundongos , Dinâmica Mitocondrial , ATPases Translocadoras de Prótons/metabolismo , Análise de Sobrevida , Canal de Ânion 1 Dependente de Voltagem/deficiência
5.
FEBS J ; 287(9): 1830-1849, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31659858

RESUMO

Previously, we have shown that active protein kinase Cα (PKCα) promotes recovery of mitochondrial function after injury in vitro [Nowak G & Bakajsova D (2012) Am J Physiol Renal Physiol 303, F515-F526]. This study examined whether PKCα regulates recovery of mitochondrial and kidney functions after ischemia-induced acute injury (AKI) in vivo. Markers of kidney injury were increased after bilateral ischemia and returned to normal levels in wild-type (WT) mice. Maximum mitochondrial respiration and activities of respiratory complexes and Fo F1 -ATPase decreased after ischemia and recovered in WT mice. Reperfusion after ischemia was accompanied by translocation of active PKCα to mitochondria. PKCα deletion reduced mitochondrial respiration and activities of respiratory complex I and Fo F1 -ATPase in noninjured kidneys, indicating that PKCα is essential in developing fully functional renal mitochondria. These changes in PKCα-deficient mice were accompanied by lower levels of complex I subunits (NDUFA9 and NDUFS3) and the γ-subunit of Fo F1 -ATPase. Also, lack of PKCα exacerbated ischemia-induced decreases in respiration, complex I and Fo F1 -ATPase activities, and blocked their recovery after injury, indicating a crucial role of PKCα in promoting mitochondrial recovery after AKI. Further, PKCα deletion exacerbated acetylation and succinylation of key mitochondrial proteins of energy metabolism after ischemia due to decreases in deacetylase and desuccinylase (sirtuin3 and sirtuin5) levels in renal mitochondria. Thus, our data show a novel role for PKCα in regulating levels of mitochondrial sirtuins and acetylation and succinylation of key mitochondrial proteins. We conclude that PKCα deletion: (a) affects renal physiology by decreasing mitochondrial capacity for maximum respiration; (b) blocks recovery of mitochondrial functions, renal morphology, and functions after AKI; and (c) decreases survival after AKI. ENZYMES: Protein kinase C: EC 2.7.11.13; NADH : ubiquinone reductase (H+ -translocating; complex I): EC 7.1.1.2; FoF1-ATPase (H+ -transporting two-sector ATPase): EC 7.1.2.2; Succinate : ubiquinone oxidoreductase (complex II): EC 1.3.5.1; Ubiquinol : cytochrome-c reductase (complex III): EC 7.1.1.8; Cytochrome c oxidase (complex IV): EC 1.9.3.1; NAD-dependent protein deacetylase sirtuin-3, mitochondrial: EC 2.3.1.286; NAD-dependent protein deacetylase sirtuin-5, mitochondrial: EC 3.5.1.-; Proteinase K (peptidase K): EC 3.4.21.64.


Assuntos
Rim/metabolismo , Mitocôndrias/metabolismo , Proteína Quinase C-alfa/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Feminino , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/patologia
6.
Am J Physiol Renal Physiol ; 317(5): F1293-F1304, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509012

RESUMO

We have previously reported that complement activation precedes the development of kidney fibrosis; however, little is known about the cellular mechanisms involved in this transition. We hypothesized that increased expression of C1 complex protease C1r, the initiator of complement activation, contributes to tubulointerstitial fibrosis and tested this idea in mice with global deletion of C1r. Although expression of C1r in untreated wild-type (WT) mice was higher in the liver compared with kidney tissue, administration of folic acid (FA) led to upregulation of C1r mRNA and protein levels only in kidney tissue. Immunohistochemistry and in situ hybridization experiments localized increased expression of C1r and C1s proteases to renal tubular epithelial cells. C1r-null mice had reduced acute tubular injury and inflammation measured 2 days after FA administration compared with WT mice. C1r deletion reduced expression of C1s, C3 fragment formation, and organ fibrosis measured 14 days after FA administration. Differential gene expression performed in kidney tissue demonstrated that C1r-null mice had reduced expression of genes associated with the acute phase response, complement, proliferation of connective tissue cells (e.g., platelet-derived growth factor receptor-ß), and reduced expression of genes associated with inflammation compared with FA-treated WT mice. In vitro experiments in renal epithelial cells demonstrated that C1s expression is dependent on increased C1r expression and that interferon-γ induces the expression of these two proteases. We conclude that increased expression of C1 complex proteases is associated with increased tissue inflammation and complement C3 formation and represents an important pathogenic mechanism leading to FA-mediated tubulointerstitial fibrosis.


Assuntos
Complemento C1r/metabolismo , Nefropatias/enzimologia , Animais , Linhagem Celular , Complemento C1r/genética , Complemento C1s/genética , Complemento C1s/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Ácido Fólico/farmacologia , Regulação Enzimológica da Expressão Gênica , Humanos , Inflamação , Rim/citologia , Nefropatias/genética , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Kidney Int ; 96(3): 656-673, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31262488

RESUMO

Podocytes have limited ability to recover from injury. Here, we demonstrate that increased mitochondrial biogenesis, to meet the metabolic and energy demand of a cell, accelerates podocyte recovery from injury. Analysis of events induced during podocyte injury and recovery showed marked upregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a transcriptional co-activator of mitochondrial biogenesis, and key components of the mitochondrial electron transport chain. To evaluate our hypothesis that increasing mitochondrial biogenesis enhanced podocyte recovery from injury, we treated injured podocytes with formoterol, a potent, specific, and long-acting ß2-adrenergic receptor agonist that induces mitochondrial biogenesis in vitro and in vivo. Formoterol increased mitochondrial biogenesis and restored mitochondrial morphology and the injury-induced changes to the organization of the actin cytoskeleton in podocytes. Importantly, ß2-adrenergic receptors were found to be present on podocyte membranes. Their knockdown attenuated formoterol-induced mitochondrial biogenesis. To determine the potential clinical relevance of these findings, mouse models of acute nephrotoxic serum nephritis and chronic (Adriamycin [doxorubicin]) glomerulopathy were used. Mice were treated with formoterol post-injury when glomerular dysfunction was established. Strikingly, formoterol accelerated the recovery of glomerular function by reducing proteinuria and ameliorating kidney pathology. Furthermore, formoterol treatment reduced cellular apoptosis and increased the expression of the mitochondrial biogenesis marker PGC-1α and multiple electron transport chain proteins. Thus, our results support ß2-adrenergic receptors as novel therapeutic targets and formoterol as a therapeutic compound for treating podocytopathies.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Fumarato de Formoterol/farmacologia , Glomerulonefrite/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Fumarato de Formoterol/uso terapêutico , Técnicas de Silenciamento de Genes , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Humanos , Camundongos , Mitocôndrias/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Podócitos/citologia , Podócitos/patologia , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
8.
J Pharmacol Exp Ther ; 369(1): 173-180, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30709866

RESUMO

Acute kidney injury (AKI) is the rapid loss of renal function after an insult, and renal proximal tubule cells (RPTCs) are central to the pathogenesis of AKI. The ß 2-adrenergic receptor (ß 2AR) agonist formoterol accelerates the recovery of renal function in mice after ischemia-reperfusion injury (IRI) with associated rescue of mitochondrial proteins; however, the cell type responsible for this recovery remains unknown. The role of RPTCs in formoterol-induced recovery of renal function was assessed in a proximal tubule-specific knockout of the ß 2AR (γGT-Cre:ADRB2Flox/Flox). These mice and wild-type controls (ADRB2Flox/Flox) were subjected to renal IRI, followed by once-daily dosing of formoterol beginning 24 hours post-IRI and euthanized at 144 hours. Compared with ADRB2Flox/Flox mice, γGT-Cre:ADRB2Flox/Flox mice had decreased renal cortical mRNA expression of the ß 2AR. After IRI, formoterol treatment restored renal function in ADRB2Flox/Flox but not γGT-Cre:ADRB2Flox/Flox mice as measured by serum creatinine, histopathology, and expression of kidney injury marker-1 (KIM-1). Formoterol-treated ADRB2Flox/Flox mice exhibited recovery of mitochondrial proteins and DNA copy number, whereas γGT-Cre:ADRB2Flox/Flox mice treated with formoterol did not. Analysis of mitochondrial morphology by transmission electron microscopy demonstrated that formoterol increased mitochondrial number and density in ADRB2Flox/Flox mice but not in γGT-Cre:ADRB2Flox/Flox mice. These data demonstrate that proximal tubule ß 2AR regulates renal mitochondrial homeostasis. Formoterol accelerates the recovery of renal function after AKI by activating proximal tubule ß 2AR to induce mitochondrial biogenesis and demonstrates the overall requirement of RPTCs in renal recovery.


Assuntos
Fumarato de Formoterol/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Mitocôndrias/patologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Am J Physiol Renal Physiol ; 315(4): F1119-F1128, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846105

RESUMO

Our laboratory previously reported that agonists of the 5-hydoxytryptamine 1F (5-HT1F) receptor induce renal mitochondrial biogenesis (MB) and that stimulation of the 5-HT1F receptor following ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) accelerated the recovery of renal function in mice. The goal of this study was to examine the contribution of the 5-HT1F receptor in the regulation of renal mitochondrial homeostasis and renal function in naïve and injured mice. Although 5-HT1F receptor knockout (KO) mice were healthy and fertile, and did not exhibit renal dysfunction, renal mitochondrial DNA copy number and mitochondrial fission gene expression increased at 10 wk of age. The 5-HT1F receptor KO mice exhibited greater proximal tubular injury and diminished renal recovery after I/R-induced AKI compared with wild-type mice. These findings were associated with persistent suppression of renal cortical MB and ATP levels after injury. In summary, the 5-HT1F receptor is a component of physiological MB regulation in the kidney, and its absence potentiates renal injury and impedes recovery.


Assuntos
Injúria Renal Aguda/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Receptores de Serotonina/metabolismo , Animais , DNA Mitocondrial/metabolismo , Rim/metabolismo , Córtex Renal/metabolismo , Masculino , Camundongos Knockout , Biogênese de Organelas , Receptores de Serotonina/genética , Traumatismo por Reperfusão/metabolismo , Receptor 5-HT1F de Serotonina
10.
Am J Physiol Renal Physiol ; 315(1): F161-F172, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29384415

RESUMO

Cisplatin is used to treat many solid cancers, but its dose-limiting side effect is nephrotoxicity, causing acute kidney injury in 30% of patients. Previously, we have developed a mouse model that better recapitulates the cisplatin dosing regimen humans receive and found that repeated dosing of cisplatin induces interstitial renal fibrosis. Chronic kidney disease is progressive and is characterized by chronic inflammation, worsening interstitial fibrosis, development of glomerulosclerosis, and endothelial dysfunction. To determine if damage caused by repeated cisplatin dosing results in bona fide chronic kidney disease, mice were treated with our repeated dosing regimen and then aged for 6 mo. These mice had progressive, chronic inflammation and worsened interstitial fibrosis compared with mice euthanized after day 24. Mice aged for 6 mo developed glomerular pathologies, and endothelial dysfunction was persistent. Mice treated with only two doses of cisplatin had little inflammation or kidney damage. Thus repeated dosing of cisplatin causes long-term effects that are characteristic of chronic kidney disease. This translational mouse model of cisplatin injury may better represent the 70% of patients that do not develop clinical acute kidney injury and can be used to identify both biomarkers for early injury, as well as novel therapeutic targets for the prevention of cisplatin-induced chronic kidney disease.


Assuntos
Albuminúria/induzido quimicamente , Antineoplásicos , Cisplatino , Glomerulonefrite/induzido quimicamente , Rim/patologia , Insuficiência Renal Crônica/induzido quimicamente , Albuminúria/metabolismo , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibrose , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Fatores de Tempo
11.
J Lipid Res ; 58(7): 1439-1452, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28490444

RESUMO

Acute kidney injury (AKI), resulting from chemotherapeutic agents such as cisplatin, remains an obstacle in the treatment of cancer. Cisplatin-induced AKI involves apoptotic and necrotic cell death, pathways regulated by sphingolipids such as ceramide and glucosylceramide. Results from this study indicate that C57BL/6J mice treated with cisplatin had increased ceramide and hexosylceramide levels in the renal cortex 72 h following cisplatin treatment. Pretreatment of mice with inhibitors of acid sphingomyelinase and de novo ceramide synthesis (amitriptyline and myriocin, respectively) prevented accumulation of ceramides and hexosylceramide in the renal cortex and protected from cisplatin-induced AKI. To determine the role of ceramide metabolism to hexosylceramides in kidney injury, we treated mice with a potent and highly specific inhibitor of glucosylceramide synthase, the enzyme responsible for catalyzing the glycosylation of ceramides to form glucosylceramides. Inhibition of glucosylceramide synthase attenuated the accumulation of the hexosylceramides and exacerbated ceramide accumulation in the renal cortex following treatment of mice with cisplatin. Increasing ceramides and decreasing glucosylceramides in the renal cortex sensitized mice to cisplatin-induced AKI according to markers of kidney function, kidney injury, inflammation, cell stress, and apoptosis. Under conditions of high ceramide generation, data suggest that metabolism of ceramides to glucosylceramides buffers kidney ceramides and helps attenuate kidney injury.-Dupre, T. V., M. A. Doll, P. P. Shah, C. N. Sharp, D. Siow, J. Megyesi, J. Shayman, A. Bielawska, J. Bielawski, L. J. Beverly, M. Hernandez-Corbacho, C. J. Clarke, A. J. Snider, R. G. Schnellmann, L. M. Obeid, Y. A. Hannun, and L. J. Siskind. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J. Lipid Res 2017. 58: 1439-1452.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Cisplatino/efeitos adversos , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Animais , Ceramidas/metabolismo , Córtex Renal/irrigação sanguínea , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Masculino , Camundongos , Ratos , Traumatismo por Reperfusão/metabolismo
12.
Am J Physiol Renal Physiol ; 312(3): F516-F532, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052876

RESUMO

We have examined the pathogenic role of increased complement expression and activation during kidney fibrosis. Here, we show that PDGFRß-positive pericytes isolated from mice subjected to obstructive or folic acid injury secrete C1q. This was associated with increased production of proinflammatory cytokines, extracellular matrix components, collagens, and increased Wnt3a-mediated activation of Wnt/ß-catenin signaling, which are hallmarks of myofibroblast activation. Real-time PCR, immunoblots, immunohistochemistry, and flow cytometry analysis performed in whole kidney tissue confirmed increased expression of C1q, C1r, and C1s as well as complement activation, which is measured as increased synthesis of C3 fragments predominantly in the interstitial compartment. Flow studies localized increased C1q expression to PDGFRß-positive pericytes as well as to CD45-positive cells. Although deletion of C1qA did not prevent kidney fibrosis, global deletion of C3 reduced macrophage infiltration, reduced synthesis of C3 fragments, and reduced fibrosis. Clodronate mediated depletion of CD11bF4/80 high macrophages in UUO mice also reduced complement gene expression and reduced fibrosis. Our studies demonstrate local synthesis of complement by both PDGFRß-positive pericytes and CD45-positive cells in kidney fibrosis. Inhibition of complement activation represents a novel therapeutic target to ameliorate fibrosis and progression of chronic kidney disease.


Assuntos
Ativação do Complemento , Complemento C1q/metabolismo , Complemento C3/metabolismo , Túbulos Renais/metabolismo , Macrófagos/metabolismo , Pericitos/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Comunicação Celular , Complemento C1q/deficiência , Complemento C1q/genética , Complemento C1q/imunologia , Complemento C3/deficiência , Complemento C3/genética , Complemento C3/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Ácido Fólico , Genótipo , Mediadores da Inflamação/metabolismo , Túbulos Renais/imunologia , Túbulos Renais/patologia , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pericitos/imunologia , Pericitos/patologia , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/patologia , Fatores de Tempo , Obstrução Ureteral/complicações , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo
13.
Am J Physiol Renal Physiol ; 312(1): F109-F120, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27760765

RESUMO

Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia.


Assuntos
Isquemia/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína Quinase C-épsilon/metabolismo , Animais , Transporte de Elétrons/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Rim/lesões , Rim/fisiopatologia , Testes de Função Renal , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Consumo de Oxigênio/fisiologia , Proteína Quinase C-épsilon/genética
14.
Am J Physiol Renal Physiol ; 310(6): F560-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26739893

RESUMO

Cisplatin, a chemotherapeutic used for the treatment of solid cancers, has nephrotoxic side effects leading to acute kidney injury (AKI). Cisplatin cannot be given to patients that have comorbidities that predispose them to an increased risk for AKI. Even without these comorbidities, 30% of patients administered cisplatin will develop kidney injury, requiring the oncologist to withhold or reduce the next dose, leading to a less effective therapeutic regimen. Although recovery can occur after one episode of cisplatin-induced AKI, longitudinal studies have indicated that multiple episodes of AKI lead to the development of chronic kidney disease, an irreversible disease with no current treatment. The standard mouse model of cisplatin-induced AKI consists of one high dose of cisplatin (>20 mg/kg) that is lethal to the animal 3 days later. This model does not accurately reflect the dosing regimen patients receive nor does it allow for the long-term study of kidney function and biology. We have developed a repeated dosing model whereby cisplatin is given once a week for 4 wk. Comparison of the repeated dosing model with the standard dosing model demonstrated that inflammatory cytokines and chemokines were induced in the repeated dosing model, but levels of cell death were lower in the repeated dosing model. The repeated dosing model had increased levels of fibrotic markers (fibronectin, transforming growth factor-ß, and α-smooth muscle actin) and interstitial fibrosis. These data indicate that the repeated dosing model can be used to study the AKI to chronic kidney disease progression as well as the mechanisms of this progression.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Nefroesclerose/induzido quimicamente , Animais , Antineoplásicos/administração & dosagem , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Cisplatino/administração & dosagem , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Masculino , Camundongos , Nefroesclerose/mortalidade
15.
Am J Physiol Renal Physiol ; 310(3): F248-58, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26661653

RESUMO

Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cisplatino , Rim/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Suramina/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Citoproteção , Dano ao DNA , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
PLoS One ; 10(8): e0136563, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26305890

RESUMO

Nephrogenic systemic fibrosis is associated with gadolinium contrast exposure in patients with reduced kidney function and carries high morbidity and mortality. We have previously demonstrated that gadolinium contrast agents induce in vivo systemic iron mobilization and in vitro differentiation of peripheral blood mononuclear cells into ferroportin (iron exporter)-expressing fibrocytic cells. In the present study we examined the role of iron in a mouse model of nephrogenic systemic fibrosis. Chronic kidney disease was induced in 8-week-old male Balb/C mice with a two-step 5/6 nephrectomy surgery. Five groups of mice were studied: control (n = 5), sham surgery control (n = 5), chronic kidney disease control (n = 4), chronic kidney disease injected with 0.5 mmol/kg body weight of Omniscan 3 days per week, for a total of 10 injections (n = 8), and chronic kidney disease with Omniscan plus deferiprone, 125 mg/kg, in drinking water (n = 9). Deferiprone was continued for 16 weeks until the end of the experiment. Mice with chronic kidney disease injected with Omniscan developed skin changes characteristic of nephrogenic systemic fibrosis including hair loss, reddening, ulceration, and skin tightening by 10 to 16 weeks. Histopathological sections demonstrated dermal fibrosis with increased skin thickness (0.25±0.06 mm, sham; 0.34±+0.3 mm, Omniscan-injected). Additionally, we observed an increase in tissue infiltration of ferroportin-expressing, fibrocyte-like cells accompanied by tissue iron accumulation in the skin of the Omniscan-treated mice. The deferiprone-treated group had significantly decreased skin thickness (p<0.05) and significantly decreased dermal fibrosis compared to the Omniscan-only group. In addition, iron chelation prevented tissue infiltration of ferroportin-expressing, fibrocyte-like cells. Our in vitro experiments demonstrated that exposure to Omniscan resulted in the release of catalytic iron and this was prevented by the iron chelator deferiprone. Deferiprone inhibited the differentiation of human peripheral blood mononuclear cells into ferroportin-expressing cells by immunohistochemical staining and western blot analysis. Our studies support an important role of iron in the pathophysiology of gadolinium chelate toxicity and nephrogenic systemic fibrosis.


Assuntos
Ferro/metabolismo , Dermopatia Fibrosante Nefrogênica/tratamento farmacológico , Dermopatia Fibrosante Nefrogênica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Animais , Meios de Contraste/efeitos adversos , Deferiprona , Modelos Animais de Doenças , Gadolínio/efeitos adversos , Gadolínio DTPA/administração & dosagem , Humanos , Masculino , Camundongos , Dermopatia Fibrosante Nefrogênica/induzido quimicamente , Dermopatia Fibrosante Nefrogênica/patologia , Piridonas/administração & dosagem , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia
17.
Free Radic Biol Med ; 86: 90-101, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26025579

RESUMO

Cardiotoxicity is one of the major side effects encountered during cancer chemotherapy with doxorubicin (DOX) and other anthracyclines. Previous studies have shown that oxidative stress caused by DOX is one of the primary mechanisms for its toxic effects on the heart. Since the redox-sensitive transcription factor, Nrf2, plays a major role in protecting cells from the toxic metabolites generated during oxidative stress, we examined the effects of the phytochemical sulforaphane (SFN), a potent Nrf2-activating agent, on DOX-induced cardiotoxicity. These studies were carried out both in vitro and in vivo using rat H9c2 cardiomyoblast cells and wild type 129/sv mice, and involved SFN pretreatment followed by SFN administration during DOX exposure. SFN treatment protected H9c2 cells from DOX cytotoxicity and also resulted in restored cardiac function and a significant reduction in DOX-induced cardiomyopathy and mortality in mice. Specificity of SFN induction of Nrf2 and protection of H9c2 cells was demonstrated in Nrf2 knockdown experiments. Cardiac accumulation of 4-hydroxynonenal (4-HNE) protein adducts, due to lipid peroxidation following DOX-induced oxidative stress, was significantly attenuated by SFN treatment. The respiratory function of cardiac mitochondria isolated from mice exposed to DOX alone was repressed, while SFN treatment with DOX significantly elevated mitochondrial respiratory complex activities. Co-administration of SFN reversed the DOX-associated reduction in nuclear Nrf2 binding activity and restored cardiac expression of Nrf2-regulated genes at both the RNA and protein levels. Together, our results demonstrate for the first time that the Nrf2 inducer, SFN, has the potential to provide protection against DOX-mediated cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/prevenção & controle , Cardiotônicos/farmacologia , Doxorrubicina/toxicidade , Isotiocianatos/farmacologia , Animais , Cardiomiopatias/sangue , Cardiomiopatias/induzido quimicamente , Caspase 3/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Peroxidação de Lipídeos , Masculino , Camundongos da Linhagem 129 , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos , Troponina C/sangue
18.
Am J Physiol Renal Physiol ; 308(2): F122-30, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25428126

RESUMO

Tissue fibrosis is a major cause of death in developed countries. It commonly occurs after either acute or chronic injury and affects diverse organs, including the heart, liver, lung, and kidney. Using the renal ablation model of chronic kidney disease, we previously found that the development of progressive renal fibrosis was dependent on p21(WAF1/Cip1) expression; the genetic knockout of the p21 gene greatly alleviated this disease. In the present study, we expanded on this observation and report that fibrosis induced by two different acute injuries to the kidney is also dependent on p21. In addition, when p21 expression was restricted only to the proximal tubule, fibrosis after injury was induced in the whole organ. One molecular fibrogenic switch we describe is transforming growth factor-ß induction, which occurred in vivo and in cultured kidney cells exposed to adenovirus expressing p21. Our data suggests that fibrosis is p21 dependent and that preventing p21 induction after stress could be a novel therapeutic target.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Túbulos Renais Proximais/metabolismo , Nefroesclerose/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Ácidos Aristolóquicos , Células Cultivadas , Feminino , Humanos , Camundongos Knockout
19.
J Am Soc Nephrol ; 25(6): 1157-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24511124

RESUMO

Mitochondrial biogenesis may be an adaptive response necessary for meeting the increased metabolic and energy demands during organ recovery after acute injury, and renal mitochondrial dysfunction has been implicated in the pathogenesis of AKI. We proposed that stimulation of mitochondrial biogenesis 24 hours after ischemia/reperfusion (I/R)-induced AKI, when renal dysfunction is maximal, would accelerate recovery of mitochondrial and renal function in mice. We recently showed that formoterol, a potent, highly specific, and long-acting ß2-adrenergic agonist, induces renal mitochondrial biogenesis in naive mice. Animals were subjected to sham or I/R-induced AKI, followed by once-daily intraperitoneal injection with vehicle or formoterol beginning 24 hours after surgery and continuing through 144 hours after surgery. Treatment with formoterol restored renal function, rescued renal tubules from injury, and diminished necrosis after I/R-induced AKI. Concomitantly, formoterol stimulated mitochondrial biogenesis and restored the expression and function of mitochondrial proteins. Taken together, these results provide proof of principle that a novel drug therapy to treat AKI, and potentially other acute organ failures, works by restoring mitochondrial function and accelerating the recovery of renal function after injury has occurred.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Etanolaminas/farmacologia , Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fumarato de Formoterol , Rim/fisiologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia
20.
PLoS One ; 8(9): e73655, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040012

RESUMO

OBJECTIVE: To determine whether delayed administration of a single dose of suramin, a drug that has been used extensively in humans to treat trypanosomiasis, attenuates renal injury in a leptin receptor deficient C57BLKS/J db/db type 2 diabetic nephropathy (T2DN) mouse model. RESEARCH DESIGN AND METHODS: Groups of female non-diabetic (control) db/m and diabetic db/db mice of 8 and 16 weeks of age, respectively, were treated with suramin (10 mg/kg) or saline i.v. All animals were euthanized one week later. Measurements in mice 1 week following treatment included the following: body weight; blood glucose; urinary protein excretion; pathological lesions in glomeruli and proximal tubules; changes in protein expression of pro-inflammatory transcription factor nuclear factor κB (NF-κB) and intracellular adhesion molecule-1 (ICAM-1), profibrotic transforming growth factor-ß1 (TGF-ß1), phospho-SMAD-3 and alpha-smooth muscle actin (α-SMA); and immunohistochemical analysis of leukocyte infiltration and collagen 1A2 (COL1A2) deposition. RESULTS: Immunoblot analysis revealed increased NF-κB, ICAM-1, TGF-ß1, phospho-SMAD-3, and α-SMA proteins in both 9 and 17 week db/db mice as compared to db/m control mice. Immunohistochemical analysis revealed moderate leukocyte infiltration and collagen 1A2 (COL1A2) deposition in 9 week db/db mice that was increased in the 17 week db/db mice. Importantly, suramin significantly decreased expression of all these markers in 9 week db/db mice and partially decreased in 17 week db/db mice without altering body weight, blood glucose or urinary protein excretion. There was no difference in creatinine clearance between 9 week db/m and db/db mice ± suramin. Importantly, in the 17 week db/db mice suramin intervention reversed the impaired creatinine clearance and overt histological damage. CONCLUSIONS: Delayed administration of a single dose of suramin in a model of T2DN attenuated inflammation and fibrosis as well as improved renal function, supporting the use of suramin in T2DN.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Suramina/farmacologia , Actinas/metabolismo , Animais , Colágeno Tipo I/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Modelos Animais de Doenças , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Molécula 1 de Adesão Intercelular/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso/química , NF-kappa B/metabolismo , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Proteína Smad3 , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Tripanossomicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA