Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Environ Manage ; 365: 121520, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917540

RESUMO

Microalgae are considered sustainable resources for the production of biofuel, feed, and bioactive compounds. Among various microalgal genera, the Tetraselmis genus, containing predominantly marine microalgal species with wide tolerance to salinity and temperature, has a high potential for large-scale commercialization. Until now, Tetraselmis sp. are exploited at smaller levels for aquaculture hatcheries and bivalve production. However, its prolific growth rate leads to promising areal productivity and energy-dense biomass, so it is considered a viable source of third-generation biofuel. Also, microbial pathogens and contaminants are not generally associated with Tetraselmis sp. in outdoor conditions due to faster growth as well as dominance in the culture. Numerous studies revealed that the metabolite compositions of Tetraselmis could be altered favorably by changing the growth conditions, taking advantage of its acclimatization or adaptation ability in different conditions. Furthermore, the biorefinery approach produces multiple fractions that can be successfully upgraded into various value-added products along with biofuel. Overall, Tetraselmis sp. could be considered a potential strain for further algal biorefinery development under the circular bioeconomy framework. In this aspect, this review discusses the recent advancements in the cultivation and harvesting of Tetraselmis sp. for wider application in different sectors. Furthermore, this review highlights the key challenges associated with large-scale cultivation, biomass harvesting, and commercial applications for Tetraselmis sp.

2.
Environ Pollut ; 348: 123796, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518973

RESUMO

Municipal wastewater (MWW) was treated by a sequential pilot microalgal cultivation process. The cultivation was performed inside a specifically designed low-cost photobioreactor (PBR) system. A microalgal consortium 2:1 was developed using Tetraselmis indica (TS) and Picochlorum sp. (PC) in the first stage and PC:TS (2:1) in the second stage and the nutrient removal efficiency and biomass production and biomolecules production was evaluated and also compared with monoculture in a two-stage sequential cultivation system. This study also investigated the effect of seasonal variations on microalgae growth and MWW treatment. The results showed that mixed microalgal consortium (TS:PC) had higher nutrient removal efficiency, with chemical oxygen demand (COD), total phosphate (TP), and total nitrate (TN) removal efficiencies of 78.50, 84.49, and 84.20%, respectively, and produced a biomass of 2.50 g/L with lipid content of 37.36% in the first stage of cultivation under indoor conditions. In the second stage of indoor cultivation, the PC:TS consortium demonstrated maximum COD, TP, and TN removal efficiencies of 92.49, 94.24, and 94.16%, respectively. It also produced a biomass of 2.65 g/L with a lipid content of 40.67%. Among all the seasonal variations, mass flow analysis indicated that the combination of mixed consortium-based two-stage sequential process during the winter season favored maximum nutrient removal efficiency of TN i.e. 88.54% (84.12 mg/L) and TP i.e., 90.18% (43.29 mg/L), respectively. It also enhanced total biomass production of 49.10 g in 20-L medium, which includes lipid yield ∼15.68 g compared to monoculture i.e., 82.06% (78.70 mg/L) and 82.87% (40.26 mg/L) removal of TN and TP, respectively, and produced biomass 43.60 g with 11.90 g of lipids.


Assuntos
Microalgas , Águas Residuárias , Biomassa , Compostos Orgânicos , Fosfatos , Nitratos , Lipídeos , Nitrogênio
3.
Environ Res ; 249: 118397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309563

RESUMO

The advancement in carbon dioxide (CO2) sequestration technology has received significant attention due to the adverse effects of CO2 on climate. The mitigation of the adverse effects of CO2 can be accomplished through its conversion into useful products or renewable fuels. In this regard, microalgae is a promising candidate due to its high photosynthesis efficiency, sustainability, and eco-friendly nature. Microalgae utilizes CO2 in the process of photosynthesis and generates biomass that can be utilized to produce various valuable products such as supplements, chemicals, cosmetics, biofuels, and other value-added products. However, at present microalgae cultivation is still restricted to producing value-added products due to high cultivation costs and lower CO2 sequestration efficiency of algal strains. Therefore, it is very crucial to develop novel techniques that can be cost-effective and enhance microalgal carbon sequestration efficiency. The main aim of the present manuscript is to explain how to optimize microalgal CO2 sequestration, integrate valuable product generation, and explore novel techniques like genetic manipulations, phytohormones, quantum dots, and AI tools to enhance the efficiency of CO2 sequestration. Additionally, this review provides an overview of the mass flow of different microalgae and their biorefinery, life cycle assessment (LCA) for achieving net-zero CO2 emissions, and the advantages, challenges, and future perspectives of current technologies. All of the reviewed approaches efficiently enhance microalgal CO2 sequestration and integrate value-added compound production, creating a green and economically profitable process.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Microalgas , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Fotossíntese , Biomassa
5.
Crit Rev Biotechnol ; : 1-19, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163946

RESUMO

Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.

6.
Chemosphere ; 351: 141245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242513

RESUMO

Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to µg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.


Assuntos
Microalgas , Águas Residuárias , Humanos , Biomassa
7.
Bioresour Technol ; 376: 128901, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931449

RESUMO

Biomass from four different Nordic microalgal species, grown in BG-11 medium or synthetic wastewater (SWW), was explored as inexpensive carbohydrate-rich feedstock for polyhydroxybutyrate (PHB) production via microbial fermentation. Thermochemical pre-treatment (acid treatment followed by autoclavation) with 2% hydrochloric acid or 1% sulphuric acid (v/v) was used to maximize sugar yield prior to fermentation. Pre-treatment resulted in ∼5-fold higher sugar yield compared to the control. The sugar-rich hydrolysate was used as carbon source for the PHB-producing extremophilic bacterium Halomonas halophila. Maximal PHB production was achieved with hydrolysate of Chlorococcum sp. (MC-1) grown on BG-11 medium (0.27 ± 0.05 g PHB/ g DW), followed by hydrolysate derived from Desmodesmus sp. (RUC-2) grown on SWW (0.24 ± 0.05 g PHB/ g DW). Nordic microalgal biomass grown on wastewater therefore can be used as cheap feedstock for sustainable bioplastic production. This research highlights the potential of Nordic microalgae to develop a biobased economy.


Assuntos
Biopolímeros , Microalgas , Águas Residuárias , Biomassa , Carboidratos , Açúcares
8.
Environ Technol ; : 1-21, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36621003

RESUMO

Microalgal-based bioprocess offers several advantages including wastewater reclamations, therefore present study assessed the usability of the combination of untreated municipal sewage wastewater (UTMSWW) and secondary treated municipal sewage wastewater (STSWW) for nutrient removal and recovery by Tetraselmis indica (T. indica) BDUG001. The present study optimized the additional nutrient supplementations (e.g. ASN-III) percentage and day-night cycle, pH and pH with aeration for monitoring high-rate biomass production and nutrient recovery. The study results showed that the combination of 75% UTMSWW + 25% ASN-III supported maximum biomass production (2.65 ± 0.07 g/L). In the optimized day-night cycle (12:12 h), T. indica BDUG001 showed improved biomass production (2.75 ± 0.07 g/L), biomass productivity (165.63 ± 4.42 mg/L/d), and photosynthetic pigments production. Under optimized pH∼ 7.0 with aeration, maximum total nitrate (TN) removal efficiency (87.67 ± 3.08-91.55 ± 1.92%) was observed, while COD and TP removal was maximum at pH ∼ 9.0. The maximum biomass production (2.35 ± 0.07-2.77 ± 0.04 g/L) with biomass productivity (93.75 ± 167.19 ± 2.21 mg/L/d) and lipid content (42.98 ± 1.86-47.85 ± 0.21% DCW) were also at pH 7.0. with aeration. The present study verified the utilization of UTMSWW with the combination of conventional medium, optimized day-night cycle, pH with aeration along with designing low-cost PBR. It was the ideal system for the cultivation of T. indica BDUG001 for the recovery of nutrients from wastewater, production of biofuels and value-added feedstock.

9.
Bioresour Technol ; 359: 127445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35718245

RESUMO

Nordic Desmodesmus microalgal strains (2-6) and (RUC-2) were exposed to abiotic stress (light and salt) to enhance lipids and carotenoids. The biomass output of both strains increased by more than 50% during light stress of 800 µmol m-2 s-1 compared to control light. The biomass of Desmodesmus sp. (2-6) contained most lipids (15% of dry weight) and total carotenoids (16.6 mg g-1) when grown at moderate light stress (400 µmol m-2 s-1), which further could be enhanced up to 2.5-fold by salinity stress. Desmodesmus sp. (RUC-2) exhibited maximal lipid (26.5%) and carotenoid (43.8 mg L-1) content at light intensities of 400 and 100 µmol m-2 s-1, respectively. Salinity stress stimulated lipid accumulation by 39%. Nordic Desmodesmus strains therefore are not only able to tolerate stress conditions, but their biomass considerably improves under stress. These strains have high potential to be used in algal bio-factories on low-cost medium like Baltic seawater.


Assuntos
Microalgas , Biomassa , Carotenoides , Luz , Lipídeos
10.
Bioresour Technol ; 351: 127028, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35318147

RESUMO

Excessive generation of wastewater is a matter of concern around the globe. Wastewater treatment utilizing a microalgae-mediated process is considered an eco-friendly and sustainable method of wastewater treatment. However, low biomass productivity, costly harvesting process, and energy extensive cultivation process are the major bottleneck. The use of the microalgal-bacteria granular consortia (MBGC) process is economic and requires less energy. For efficient utilization of MBGC, knowledge of its structure, composition and interaction are important. Various microscopic, molecular and metabolomics techniques play a significant role in understating consortia structure and interaction between partners. Microalgal-bacteria granular consortia structure is affected by various cultivation parameters like pH, temperature, light intensity, salinity, and the presence of other pollutants in wastewater. In this article, a critical evaluation of recent literature was carried out to develop an understanding related to interaction behavior that can help to engineer consortia having efficient nutrient removal capacity with reduced energy consumption.


Assuntos
Microalgas , Purificação da Água , Bactérias , Biomassa , Águas Residuárias
11.
Artigo em Inglês | MEDLINE | ID: mdl-35329358

RESUMO

The major downfalls of the microalgal biorefinery are low volume of high value product accumulation, low biomass productivity and high cultivation costs. Here, we aimed to improve the biomass productivity of the industrially relevant Picochlorum sp. BDUG 100241 strain. The growth of Picochlorum sp. BDUG 100241 was investigated under different cultivations conditions, including photoautotrophic (with light), mixotrophic (1% glucose, with light) and heterotrophic (1% glucose, without light). Among them, Picochlorum sp. BDUG100241 showed the highest growth in the mixotrophic condition. Under different (1%) carbon sources' supplementation, including glucose, sodium acetate, glycerol, citric acid and methanol, Picochlorum sp. BDUG100241 growth was tested. Among them, sodium acetate was found to be most suitable carbon source for Picochlorum sp. BDUG 100241 growth, biomass (1.67 ± 0.18 g/L) and biomolecule productivity. From the different concentrations of sodium acetate (0, 2.5, 5.0, 7.5 and 10 g/L) tested, the maximum biomass production of 2.40 ± 0.20 g/L with the biomass productivity of 95 ± 5.00 mg/L/d was measured from 7.5 g/L in sodium acetate. The highest total lipid (53.50 ± 1.70%) and total carotenoids (0.75 ± 0.01 µg/mL) contents were observed at the concentration of 7.5 g/L and 5.0 g/L of sodium acetate as a carbon source, respectively. In conclusion, the mixotrophic growth condition containing 7.5 g/L of sodium acetate showed the maximum biomass yield and biomolecule accumulation compared to other organic carbon sources.


Assuntos
Clorófitas , Microalgas , Biomassa , Carbono , Glucose , Acetato de Sódio
12.
Environ Sci Pollut Res Int ; 29(41): 61905-61937, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34618318

RESUMO

Urbanization is a revolutionary and necessary step for the development of nations. However, with development emanates its drawback i.e., generation of a huge amount of wastewater. The existence of diverse types of nutrient loads and toxic compounds in wastewater can reduce the pristine nature of the ecosystem and adversely affects human and animal health. The conventional treatment system reduces most of the chemical contaminants but their removal efficiency is low. Thus, microalgae-based biological wastewater treatment is a sustainable approach for the removal of nutrient loads from wastewater. Among various microalgae, Tetraselmis sp. is a robust strain that can remediate industrial, municipal, and animal-based wastewater and reduce significant amounts of nutrient loads and heavy metals. The produced biomass contains lipids, carbohydrates, and pigments. Among them, carbohydrates and lipids can be used as feedstock for the production of bioenergy products. Moreover, the usage of a photobioreactor (PBR) system improves biomass production and nutrient removal efficiency. Thus, the present review comprehensively discusses the latest studies on Tetraselmis sp. based wastewater treatment processes, focusing on the use of different bioreactor systems to improve pollutant removal efficiency. Moreover, the applications of Tetraselmis sp. biomass, advancement and research gap such as immobilized and co-cultivation have also been discussed. Furthermore, an insight into the harvesting of Tetraselmis biomass, effects of physiological, and nutritional parameters for their growth has also been provided. Thus, the present review will broaden the outlook and help to develop a sustainable and feasible approach for the restoration of the environment.


Assuntos
Clorófitas , Microalgas , Purificação da Água , Animais , Biomassa , Carboidratos , Ecossistema , Humanos , Lipídeos , Fotobiorreatores , Águas Residuárias/química
13.
Biomolecules ; 11(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944505

RESUMO

Microorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microalgae are an auspicious source of vital bioactive compounds. In this review, the existing research regarding antimicrobial molecules from microorganisms is summarized. The potential antimicrobial compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endophytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described. Furthermore, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights the possibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical applications. However, more investigations are required to isolate, separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics.


Assuntos
Anti-Infecciosos/farmacologia , Fatores Biológicos/farmacologia , Actinobacteria/química , Anti-Infecciosos/classificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Archaea/química , Bacteriocinas/farmacologia , Fatores Biológicos/classificação , Fungos/química , Microalgas/química
14.
Appl Biochem Biotechnol ; 193(11): 3812-3854, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34347250

RESUMO

The polyhydroxyalkanoate was discovered almost around a century ago. Still, all the efforts to replace the traditional non-biodegradable plastic with much more environmentally friendly alternative are not enough. While the petroleum-based plastic is like a parasite, taking over the planet rapidly and without any feasible cure, its perennial presence has made the ocean a floating island of life-threatening debris and has flooded the landfills with toxic towering mountains. It demands for an immediate solution; most resembling answer would be the polyhydroxyalkanoates. The production cost is yet one of the significant challenges that various corporate is facing to replace the petroleum-based plastic. To deal with the economic constrain better strain, better practices, and a better market can be adopted for superior results. It demands for systems for polyhydroxyalkanoate production namely bacteria, yeast, microalgae, and transgenic plants. Solely strains affect more than 40% of overall production cost, playing a significant role in both upstream and downstream processes. The highly modifiable nature of the biopolymer provides the opportunity to replace the petroleum plastic in almost all sectors from food packaging to medical industry. The review will highlight the recent advancements and techno-economic analysis of current commercial models of polyhydroxyalkanoate production. Bio-compatibility and the biodegradability perks to be utilized highly efficient in the medical applications gives ample reason to tilt the scale in the favor of the polyhydroxyalkanoate as the new conventional and sustainable plastic.


Assuntos
Bactérias/metabolismo , Poli-Hidroxialcanoatos , Biodegradação Ambiental , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/química
15.
Chemosphere ; 280: 130553, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33940454

RESUMO

Microalgae is a renewable bioresource with the potential to replace the conventional fossil-based industrial production of organic chemicals and pharmaceuticals. Moreover, the microalgal biomass contains carotenoids, vitamins, and other biomolecules that are widely used as food supplements. However, the microalgal biomass production, their composition variations, energy-intensive harvesting methods, optimized bio-refinery routes, and lack of techno-economic analysis are the major bottleneck for the life-sized commercialization of this nascent bio-industry. This review discusses the microalgae-derived key bioactive compounds and their applications in different sectors for human health. Furthermore, this review proposes advanced strategies to enhance the productivity of bioactive compounds and highlight the key challenges associated with a safety issue for use of microalgae biomass. It also provides a detailed global scenario and market demand of microalgal bioproducts. In conclusion, this review will provide the concept of microalgal biorefinery to produce bioactive compounds at industrial scale platform for their application in the nutraceutical and pharmaceutical sector considering their current and future market trends.


Assuntos
Microalgas , Preparações Farmacêuticas , Biocombustíveis , Biomassa , Biotecnologia , Suplementos Nutricionais , Humanos
16.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672774

RESUMO

Oxidative stress originates from an elevated intracellular level of free oxygen radicals that cause lipid peroxidation, protein denaturation, DNA hydroxylation, and apoptosis, ultimately impairing cell viability. Antioxidants scavenge free radicals and reduce oxidative stress, which further helps to prevent cellular damage. Medicinal plants, fruits, and spices are the primary sources of antioxidants from time immemorial. In contrast to plants, microorganisms can be used as a source of antioxidants with the advantage of fast growth under controlled conditions. Further, microbe-based antioxidants are nontoxic, noncarcinogenic, and biodegradable as compared to synthetic antioxidants. The present review aims to summarize the current state of the research on the antioxidant activity of microorganisms including actinomycetes, bacteria, fungi, protozoa, microalgae, and yeast, which produce a variety of antioxidant compounds, i.e., carotenoids, polyphenols, vitamins, and sterol, etc. Special emphasis is given to the mechanisms and signaling pathways followed by antioxidants to scavenge Reactive Oxygen Species (ROS), especially for those antioxidant compounds that have been scarcely investigated so far.


Assuntos
Antioxidantes/metabolismo , Bactérias/metabolismo , Fungos/metabolismo , Microalgas/metabolismo , Antioxidantes/química , Estrutura Molecular
17.
J Clin Med ; 10(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498861

RESUMO

Coronavirus Disease 19 (COVID-19), due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become an on-going global health emergency affecting over 94 million cases with more than 2 million deaths globally. Primarily identified as atypical pneumonia, it has developed into severe acute respiratory distress syndrome (ARDS), a multi-organ dysfunction with associated fatality. Ever since its emergence, COVID-19 with its plethora of clinical presentations has signalled its dynamic nature and versatility of the disease process. Being a disease with droplet transmission has now assumed the proportion of a suspected airborne nature which, once proved, poses a Herculean task to control. Because of the wide distribution of the human angiotensin-converting enzyme-2 (hACE2) receptors, known for its transmission, we envisage its multiorgan spread and extensive disease distribution. Thus, an extensive review of the extrapulmonary organotropism of SARS-CoV-2 with organ-specific pathophysiology and associated manifestations like dermatological complications, myocardial dysfunction, gastrointestinal symptoms, neurologic illnesses, hepatic and renal injury is needed urgently. The plausible mechanism of site-specific viral invasion is also discussed to give a comprehensive understanding of disease complexity, to help us to focus on research priorities and therapeutic strategies to counter the disease progression. A note on the latest advancements in vaccine research will enlighten the scientific world and equip it for better preparedness.

18.
Bioresour Technol ; 325: 124653, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33465644

RESUMO

Polyhydroxyalkanoates (PHAs) are group monomers/heteropolymers that are biodegradable and widely used in biomedical applications. They are considered as alternatives to fossil derived polymers and accumulated by microbes including extremophilic archaea as energy storage inclusions under nutrient limitations. The use of extremophilic archaea for PHA production is an economically viable option for conventional aerobic processes, but less is known about their pathways and PHA accumulation capacities. This review summarized: (a) specific adaptive mechanisms towards extreme environments by extremophiles and specific role of PHAs; (b) understanding of PHA synthesis/metabolism in archaea and specific functional genes; (c) genetic engineering and process engineering approaches required for high-rate PHA production using extremophilic archaea. To conclude, the future studies are suggested to understand the membrane lipids and PHAs accumulation to explain the adaptation mechanism of extremophiles and exploiting it for commercial production of PHAs.


Assuntos
Extremófilos , Poli-Hidroxialcanoatos
19.
Bioengineered ; 12(1): 476-495, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33472503

RESUMO

Huge quantities of apple orchard waste (AOW) generated could be regarded as a promising alternative energy source for fuel and material production. Conventional and traditional processes for disposal of these wastes are neither economical nor environment friendly. Hence, sustainable technologies are required to be developed to solve this long-term existence and continuous growing problem. In light of these issues, this review pays attention towards sustainable and renewable systems, various value-added products from an economic and environmental perspective. Refined bio-product derived from AOW contributes to resource and energy demand comprising of biomethane, bioethanol, biofuels, bio-fertilizers, biochar, and biochemicals, such as organic acid, and enzymes. However, the market implementation of biological recovery requires reliable process technology integrated with an eco-friendly and economic production chain, classified management.


Assuntos
Agricultura , Produtos Agrícolas/economia , Malus , Reciclagem , Gerenciamento de Resíduos , Agricultura/economia , Agricultura/estatística & dados numéricos , Biocombustíveis , Resíduos Industriais/economia
20.
Sci Total Environ ; 751: 141599, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890799

RESUMO

Treatment of industrial and domestic wastewater is very important to protect downstream users from health risks and meet the freshwater demand of the ever-increasing world population. Different types of wastewater (textile, dairy, pharmaceutical, swine, municipal, etc.) vary in composition and require different treatment strategies. Wastewater management and treatment is an expensive process; hence, it is important to integrate relevant technology into this process to make it more feasible and cost-effective. Wastewater treatment using microalgae-based technology could be a global solution for resource recovery from wastewater and to provide affordable feedstock for bioenergy (biodiesel, biohydrogen, bio-alcohol, methane, and bioelectricity) production. Various microalgal cultivation systems (open or closed photobioreactors), turf scrubber, and hybrid systems have been developed. Although many algal biomass harvesting methods (physical, chemical, biological, and electromagnetic) have been reported, it is still an expensive process. In this review article, resource recovery from wastewater using algal cultivation, biomass harvesting, and various technologies applied in converting algal biomass into bioenergy, along with the various challenges that are encountered are discussed in brief.


Assuntos
Microalgas , Animais , Biocombustíveis , Biomassa , Fotobiorreatores , Suínos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA