RESUMO
Trypsin inhibitors are known to act against insect pests by inhibiting proteases of the digestive tract. In this study, we report structural and functional characterization of â¼ 19 kDa Albizia procera Kunitz-type trypsin inhibitor (ApKTI) protein with potential bio-insecticidal applications. Crystal structure of ApKTI protein has been refined to 1.42 Å and molecular structure (8HNR) showed highly beta sheeted conformation including 12 beta sheets, 15 loops and two small alpha helices. Docking between predicted model of Tribolium castaneum trypsin (TcPT) and 8HNR produced a stable complex (-11.3 kcal/mol) which reflects the inhibitory potential of ApKTI against insect gut trypsin. Significant mortality was observed in all life stages of T. castaneum including egg, larvae, pupae and adults with a 3.0 mg native ApKTI treatment in comparison to negative control. Although standard trypsin inhibitor (Glycine max trypsin inhibitors; GmKTI; 3.0 mg) produced maximum reduction against all above life stages; however, a non-significant mortality difference was observed in comparison to 3.0 mg native ApKTI. The study further explores the synthesis and characterization of Graphene (GNPs) and Zinc oxide (ZnONPs) nanoparticles, followed by the optimization of ApKTI and GmKTI loading on both nanoparticles to evaluate their enhanced insecticidal effectiveness. Encapsulated proteins showed significant mortality against T. castaneum across all concentrations, with GNPs proving more effective than ZnONPs. Additionally, encapsulated GmKTI produced significant mortality of eggs compared to loaded ApKTI treatments while other life stages were non-significantly affected by two proteins. This research highlights the importance of encapsulated ApKTI protein for eco-friendly pest management strategies.
RESUMO
Vicilins are major seed storage proteins and show differential binding affinities toward sugar moieties of fungal cell wall and insect gut epithelium. Hence, purpose of study is the thorough in-silico characterization of interactions between vicilin and chitin oligomer followed by fungal and insecticidal bioassays. This work covers the molecular simulation studies explaining the interactions between Pisum sativum vicilin (PsV) and chitin oligomer followed by protein bioassay against different pathogens. LC-MS/MS of purified PsV (â¼50 kDa) generated residual data along high pea vicilin homology (UniProtKB ID; P13918). Predicted model (PsV) indicated the characteristic homotrimer joined through head-to-tail association and each monomer is containing a bicupin domain. PsV site map analysis showed a new site (Site 4) into which molecular docking confirmed the strong binding of chitin oligomer (GlcNAc)4. Molecular dynamics simulation data (50 ns) indicated that chitin-binding site was comprised of 8 residues (DKEDRNEN). However, aspartate and glutamate significantly contributed in the stability of ligand binding. Computational findings were further verified via significant growth inhibition of Aspergillus flavus, A. niger, and Fusarium oxysporum against PsV. Additionally, the substantial adult population of Brevicoryne brassicae was reduced and different life stages of Tribolium castaneum also showed significant mortality.
RESUMO
BACKGROUND: Fungi and insect pests ruin stored crop grain, which results in millions of dollars of damage, presenting an ongoing challenge for farmers in addition to diminishing the safety of stored food. A wide-range defensive system against pathogens is needed to reduce or even eliminate the dependence of the crop yield upon the use of pesticides. Plant defensins (γ-thionins) are antimicrobial peptides (AMPs) that are a component of the host defense system. They are known to interact with cell membranes to exhibit antifungal and insecticidal activity. They exhibit a broad range of activities against fungi and insects and are effective at low concentrations. Thionins act on membranes, greatly reducing the development of pathogen resistance. OBJECTIVE: The aim of this study is to investigate a bioactive molecule that acts against fungal pathogens and stored grain insect pests. METHODS: γ-thionin protein was extracted from Brassica oleracea L. var. capitata f. alba (white cabbage) seed powder in phosphate buffer (100 mM, pH 7.0) and was identified by MALDI-TOF/TOF. The crude extract was subjected to 70% ammonium sulfate saturation followed by gel filtration chromatography. The disc diffusion assay along with a microtiter bioassay was used to determine the antifungal activity of the protein against phytopathogenic fungi. The insecticidal efficacy was evaluated by feeding insect pests with food contaminated with the purified protein. Additionally, an in silico molecular structure prediction study of the protein was performed using Auto Dock Vina for molecular docking of the protein with either fungal membrane moieties or α-amylase from Tenebrio molitor L. MD simulations of protein-ligand complexes were conducted using Schrodinger's Desmond module. RESULTS: γ-Thionin (BoT) was purified from white cabbage seeds and showed 100% homology with thionin (Brassica oleracea L. var. viridis) and 80% homology with defensin-like protein 1 (Raphanus sativus L.), respectively. BoT significantly inhibited the mycelial growth of Aspergillus niger van Tieghem and Aspergillus flavus Link at a concentration of 2 µM. Similarly, 0.12 µM BoT treatment resulted in significant mortality of Tribolium castaneum Herbst and Sitophilus oryzae L. Molecular docking and MD simulation of BoT confirmed the strong binding affinity with fungal membrane moieties (phosphatidylinositol 4,5-bisphosphate and phosphatidic acid), which causes disruption of the cell membrane and leakage of the cellular contents, leading to cell death. BoT blocked the active site of α-amylase, and as a result of the inactivation of this gut enzyme, the digestive systems of insects were disturbed, resulting in their deaths. CONCLUSION: This study revealed that γ-thionin is a good antifungal and insecticidal agent that could be used as an alternate to fungicides and insecticides.
Assuntos
Fungicidas Industriais , Inseticidas , Tioninas , Humanos , Animais , Tioninas/química , Tioninas/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Inseticidas/farmacologia , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Pós , Ligantes , Sulfato de Amônio , Sementes , Insetos , Defensinas/farmacologia , Defensinas/química , alfa-Amilases , Ácidos Fosfatídicos , Misturas Complexas , Fosfatidilinositóis , FosfatosRESUMO
A Kunitz-type trypsin inhibitor protein has been purified and characterized from seeds of Acacia nilotica L. LC-MS/MS analysis of Acacia nilotica trypsin inhibitor (AnTI) provided the N-terminal fragment of 11 amino acids which yielded 100% identity with already reported Kunitz-type trypsin inhibitor protein of Acacia confusa (AcTI) in UniProtKB database search. SDS-PAGE showed a single band of ~21 kDa under nonreduced condition and appearance of a daughter band (17 kDa) in the presence of ß-mercaptoethanol indicating the presence of interchain disulfide linkage typical for Kunitz-type trypsin inhibitors. AnTI was purified from seed extract by using a combination of anion exchange and gel filtration chromatography. Since AnTI showed maximum homology with AcTI, a molecular structure of AcTI was predicted which showed highly ß-sheeted molecular conformation similar to crystallographic structure of Enterolobium contortisiliquum trypsin inhibitor (EcTI). AnTI (20 µg) produces significant population inhibition against different human pathogenic bacteria along strong antifungal activity (50 µg). Entomotoxin potential of AnTI was evaluated against two stored grain insect pests Tribolium castaneum (Herbst) (Tenebrionidae: Coleoptera) and Sitophilus oryzae (Linnaeus) (Curculionidae: Coleoptera). Statistically significant mortality of T. castaneum adults was observed at 1.5 mg after 15 days in comparison to control. Additionally, number of total eggs, larvae, pupae, adults, and their male/female ratio were also severely reduced in comparison to control. Similarly, two generation progeny of S. oryzae was studied after mixing AnTI with rice kernels. Mean percent mortality of adult population was significantly higher after 9 days of exposure in comparison to control group. AnTI significantly reduced the F1 generation while little mortality was observed for F2 generation. Exploration of such potent molecules is the prerequisite of our time regarding the anticipation of postantibiotic era and the development of insect resistance against chemical pesticides.