Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Int ; 178: 105802, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971504

RESUMO

We previously showed that stroke alters circular RNA (circRNA) expression profiles. Many circRNAs undergo epitranscriptomic modifications, particularly methylation of adenosine to form N6-methyladenosine (m6A). This modification significantly influences the circRNA metabolism and functionality. Hence, we currently evaluated if transient focal ischemia in adult C57BL/6J mice alters the m6A methylation of circRNAs. Changes in m6A were profiled in the peri-infarct cortex following immunoprecipitation coupled with microarrays. Correlation and gene ontology analyses were performed to understand the association of m6A changes with circRNA regulation and functional implications after stroke. Many circRNAs showed differential regulation (up or down) after stroke, and this change was highest at 24h of reperfusion. Notably, most circRNAs differentially regulated after stroke also exhibited temporal changes in m6A modification patterns. The majority of circRNAs that showed post-stroke differential m6A modifications were derived from protein-coding genes. Hyper-than hypomethylation of circRNAs was most prevalent after stroke. Gene ontology analysis of the host genes suggested that m6A-modified circRNAs might regulate functions such as synapse-related processes, indicating that m6A epitranscriptomic modification in circRNAs could potentially influence post-stroke synaptic pathophysiology.


Assuntos
Adenosina , Camundongos Endogâmicos C57BL , RNA Circular , Acidente Vascular Cerebral , Animais , RNA Circular/genética , RNA Circular/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Camundongos , RNA/genética , RNA/biossíntese , Metilação
2.
Transl Stroke Res ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869772

RESUMO

N6-Methyladenosine (m6A) is a neuronal-enriched, reversible post-transcriptional modification that regulates RNA metabolism. The m6A-modified RNAs recruit various m6A-binding proteins that act as readers. Differential m6A methylation patterns are implicated in ischemic brain damage, yet the precise role of m6A readers in propagating post-stroke m6A signaling remains unclear. We presently evaluated the functional significance of the brain-enriched m6A reader YTHDF1, in post-stroke pathophysiology. Focal cerebral ischemia significantly increased YTHDF1 mRNA and protein expression in adult mice of both sexes. YTHDF1-/- male, but not female, mice subjected to transient middle cerebral artery occlusion (MCAO) showed worsened motor function recovery and increased infarction compared to sex-matched YTHDF1+/+ mice. YTHDF1-/- male, but not female, mice subjected to transient MCAO also showed significantly perturbed expression of genes related to inflammation, and increased infiltration of peripheral immune cells into the peri-infarct cortex, compared with sex-matched YTHDF1+/+ mice. Thus, this study demonstrates a sexual dimorphism of YTHDF1 in regulating post-ischemic inflammation and pathophysiology. Hence, post-stroke epitranscriptomic regulation might be sex-dependent.

3.
Neurochem Int ; 178: 105795, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908519

RESUMO

Preconditioning-induced cerebral ischemic tolerance is known to be a beneficial adaptation to protect the brain in an unavoidable event of stroke. We currently demonstrate that a short bout (6 weeks) of intermittent fasting (IF; 15 h fast/day) induces similar ischemic tolerance to that of a longer bout (12 weeks) in adult C57BL/6 male mice subjected to transient middle cerebral artery occlusion (MCAO). In addition, the 6 weeks IF regimen induced ischemic tolerance irrespective of age (3 months or 24 months) and sex. Mice subjected to transient MCAO following IF showed improved motor function recovery (rotarod and beam walk tests) between days 1 and 14 of reperfusion and smaller infarcts (T2-MRI) on day 1 of reperfusion compared with age/sex matched ad libitum (AL) controls. Diet influences the gut microbiome composition and stroke is known to promote gut bacterial dysbiosis. We presently show that IF promotes a beneficial phenotype of gut microbiome following transient MCAO compared with AL cohort. Furthermore, post-stroke levels of short-chain fatty acids (SCFAs), which are known to be neuroprotective, are higher in the fecal samples of the IF cohort compared with the AL cohort. Thus, our studies indicate the efficacy of IF in protecting the brain after stroke, irrespective of age and sex, probably by altering gut microbiome and SCFA production.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Infarto da Artéria Cerebral Média , Jejum Intermitente , Animais , Feminino , Masculino , Camundongos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/microbiologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Infarto da Artéria Cerebral Média/metabolismo , Jejum Intermitente/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo
4.
J Neurochem ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279529

RESUMO

Post-stroke neuroinflammation is pivotal in brain repair, yet persistent inflammation can aggravate ischemic brain damage and hamper recovery. Following stroke, specific molecules released from brain cells attract and activate central and peripheral immune cells. These immune cells subsequently release diverse inflammatory molecules within the ischemic brain, initiating a sequence of events, including activation of transcription factors in different brain cell types that modulate gene expression and influence outcomes; the interactive action of various noncoding RNAs (ncRNAs) to regulate multiple biological processes including inflammation, epitranscriptomic RNA modification that controls RNA processing, stability, and translation; and epigenetic changes including DNA methylation, hydroxymethylation, and histone modifications crucial in managing the genic response to stroke. Interactions among these events further affect post-stroke inflammation and shape the depth of ischemic brain damage and functional outcomes. We highlighted these aspects of neuroinflammation in this review and postulate that deciphering these mechanisms is pivotal for identifying therapeutic targets to alleviate post-stroke dysfunction and enhance recovery.

5.
Transl Stroke Res ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129636

RESUMO

The microRNA-21 (miR-21) levels in the brain are crucial in determining post-stroke brain damage and recovery. The miR-21 exerts neuroprotection by targeting mRNAs that translate proteins that mediate brain damage. We currently determined the efficacy and efficiency of intravenously administered miR-21 mimic after focal cerebral ischemia in mice. Adult male mice were intravenously administered with either control mimic or miR-21 mimic at 5 min/2 h after reperfusion following 1 h transient middle cerebral artery occlusion to determine the therapeutic window of miR-21 mimic. Adult female, type-2 diabetic male, aged male, and aged female mice were administered with control/miR-21 mimic at 5 min after reperfusion following 35 min/1 h transient middle cerebral artery occlusion. Early administration of miR-21 mimic significantly reduced brain damage and promoted long-term recovery after stroke. Further, miR-21 mimic is more effective in males than in females subjected to stroke. However, delayed treatment with miR-21 mimic is not efficacious, and type-2 diabetic subjects show no improvement with miR-21 mimic treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA