Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(7): 3694-3812, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38517093

RESUMO

Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.

2.
Small ; : e2311694, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363062

RESUMO

As a fundamental product of CO2 conversion through two-electron transfer, CO is used to produce numerous chemicals and fuels with high efficiency, which has broad application prospects. In this work, it has successfully optimized catalytic activity by fabricating an electrocatalyst featuring crystalline-amorphous CoO-InOx interfaces, thereby significantly expediting CO production. The 1.21%CoO-InOx consists of randomly dispersed CoO crystalline particles among amorphous InOx nanoribbons. In contrast to the same-phase structure, the unique CoO-InOx heterostructure provides plentiful reactive crystalline-amorphous interfacial sites. The Faradaic efficiency of CO (FECO ) can reach up to 95.67% with a current density of 61.72 mA cm-2 in a typical H-cell using MeCN containing 0.5 M 1-Butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6 ) as the electrolyte. Comprehensive experiments indicate that CoO-InOx interfaces with optimization of charge transfer enhance the double-layer capacitance and CO2 adsorption capacity. Theoretical calculations further reveal that the regulating of the electronic structure at interfacial sites not only optimizes the Gibbs free energy of *COOH intermediate formation but also inhibits HER, resulting in high selectivity toward CO.

3.
Angew Chem Int Ed Engl ; 63(2): e202314708, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37991707

RESUMO

Direct CO2 electroreduction to valuable chemicals is critical for carbon neutrality, while its main products are limited to simple C1 /C2 compounds, and traditionally, the anodic O2 byproduct is not utilized. We herein report a tandem electrothermo-catalytic system that fully utilizes both cathodic (i.e., CO) and anodic (i.e., O2 ) products during overall CO2 electrolysis to produce valuable organic amides from arylboronic acids and amines in a separate chemical reactor, following the Pd(II)-catalyzed oxidative aminocarbonylation mechanism. Hexamethylenetetramine (HMT)-incorporated silver and nickel hydroxide carbonate electrocatalysts were prepared for efficient coproduction of CO and O2 with Faradaic efficiencies of 99.3 % and 100 %, respectively. Systematic experiments, operando attenuated total reflection surface-enhanced Fourier transform infrared spectroscopy characterizations and theoretical studies reveal that HMT promotes *CO2 hydrogenation/*CO desorption for accelerated CO2 -to-CO conversion, and O2 inhibits reductive deactivation of the Pd(II) catalyst for enhanced oxidative aminocarbonylation, collectively leading to efficient synthesis of 10 organic amides with high yields of above 81 %. This work demonstrates the effectiveness of a tandem electrothermo-catalytic strategy for economically attractive CO2 conversion and amide synthesis, representing a new avenue to explore the full potential of CO2 utilization.

4.
Angew Chem Int Ed Engl ; 62(29): e202304050, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37130829

RESUMO

Hydrogen peroxide (H2 O2 ) and formate are important chemicals used in various chemical manufacturing industries. One promising approach for the simultaneous production of these chemicals is coupling anodic two-electron water oxidation with cathodic CO2 reduction in an electrolyzer using nonprecious bifunctional electrocatalysts. Herein, we report an innovative hybrid electrosynthesis strategy using Zn-doped SnO2 (Zn/SnO2 ) nanodots as bifunctional redox electrocatalysts to achieve Faradaic efficiencies of 80.6 % and 92.2 % for H2 O2 and formate coproduction, respectively, along with excellent stability for at least 60 h at a current density of ≈150 mA cm-2 . Through a combination of physicochemical characterizations, including operando attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), isotope labeling mass spectrometry (MS)/1 H NMR and quasi-in situ electron paramagnetic resonance (EPR), with density functional theory (DFT) calculations, we discovered that the Zn dopant facilitates the coupling of *OH intermediates to promote H2 O2 production and optimizes the adsorption of *OCHO intermediates to accelerate formate formation. Our findings offer new insights into designing more efficient bifunctional electrocatalyst-based pair-electrosynthesis system for the coproduction of H2 O2 and formate feedstocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA