RESUMO
The regulation of seed development is critical for determining crop yield. Auxins are vital phytohormones that play roles in various aspects of plant growth and development. However, its role in amino acid biosynthesis and metabolism in seeds is not fully understood. In this study, we identified a mutant with small seeds through forward genetic screening in Medicago truncatula. The mutated gene encodes MtPIN4, an ortholog of PIN1. Using molecular approaches and integrative omics analyses, we discovered that auxin and amino acid content significantly decreased in mtpin4 seeds, highlighting the role of MtPIN4-mediated auxin distribution in amino acid biosynthesis and metabolism. Furthermore, genetic analysis revealed that the three orthologs of PIN1 have specific and overlapping functions in various developmental processes in M. truncatula. Our findings emphasize the significance of MtPIN4 in seed development and offer insights into the molecular mechanisms governing the regulation of seed size in crops. This knowledge could be applied to enhance crop quality by targeted manipulation of seed protein regulatory pathways.
RESUMO
Leaves are the primary photosynthetic structures, while photosynthesis is the direct motivation of crop yield formation. As a legume plant, peanut (Arachis hypogaea) is one of the most economically essential crops as well as an important source of edible oil and protein. The leaves of A. hypogaea are in the tetrafoliate form, which is different from the trifoliate leaf pattern of Medicago truncatula, a model legume species. In A. hypogaea, an even-pinnate leaf with a pair of proximal and distal leaflets was developed; however, only a single terminal leaflet and a pair of lateral leaflets were formed in the odd-pinnate leaf in M. truncatula. In this study, the development of compound leaf in A. hypogaea was investigated. Transcriptomic profiles revealed that the common and unique differentially expressed genes were identified in a proximal leaflet and a distal leaflet, which provided a research route to understand the leaf development in A. hypogaea. Then, a naturally occurring mutant line with leaf developmental defects in A. hypogaea was obtained, which displayed a pentafoliate form with an extra terminal leaflet. The characterization of the mutant indicated that cytokinin and class I KNOTTED-LIKE HOMEOBOX were involved in the control of compound leaf pattern in A. hypogaea. These results expand our knowledge and provide insights into the molecular mechanism underlying the formation of different compound leaf patterns among species.
RESUMO
Increasing the protein content of soybean seeds through a higher ratio of glycinin is important for soybean breeding and food processing; therefore, the integration of different quantitative trait loci (QTLs) is of great significance. In this study, we investigated the collinearity of seed protein QTLs. We identified 192 collinear protein QTLs that formed six hotspot regions. The two most important regions had seed protein 36-10 and seed protein 36-20 as hub nodes. We used a chromosome segment substitution line (CSSL) population for QTL validation and identified six CSSL materials with collinear QTLs. Five materials with higher protein and glycinin contents in comparison to the recurrent parent were analyzed. A total of 13 candidate genes related to seed protein from the QTL hotspot intervals were detected, 8 of which had high expression in mature soybean seeds. These results offer a new analysis method for molecular-assisted selection (MAS) and improvement of soybean product quality.