Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Sel Evol ; 56(1): 35, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698347

RESUMO

BACKGROUND: The theory of "metafounders" proposes a unified framework for relationships across base populations within breeds (e.g. unknown parent groups), and base populations across breeds (crosses) together with a sensible compatibility with genomic relationships. Considering metafounders might be advantageous in pedigree best linear unbiased prediction (BLUP) or single-step genomic BLUP. Existing methods to estimate relationships across metafounders Γ are not well adapted to highly unbalanced data, genotyped individuals far from base populations, or many unknown parent groups (within breed per year of birth). METHODS: We derive likelihood methods to estimate Γ . For a single metafounder, summary statistics of pedigree and genomic relationships allow deriving a cubic equation with the real root being the maximum likelihood (ML) estimate of Γ . This equation is tested with Lacaune sheep data. For several metafounders, we split the first derivative of the complete likelihood in a term related to Γ , and a second term related to Mendelian sampling variances. Approximating the first derivative by its first term results in a pseudo-EM algorithm that iteratively updates the estimate of Γ by the corresponding block of the H-matrix. The method extends to complex situations with groups defined by year of birth, modelling the increase of Γ using estimates of the rate of increase of inbreeding ( Δ F ), resulting in an expanded Γ and in a pseudo-EM+ Δ F algorithm. We compare these methods with the generalized least squares (GLS) method using simulated data: complex crosses of two breeds in equal or unsymmetrical proportions; and in two breeds, with 10 groups per year of birth within breed. We simulate genotyping in all generations or in the last ones. RESULTS: For a single metafounder, the ML estimates of the Lacaune data corresponded to the maximum. For simulated data, when genotypes were spread across all generations, both GLS and pseudo-EM(+ Δ F ) methods were accurate. With genotypes only available in the most recent generations, the GLS method was biased, whereas the pseudo-EM(+ Δ F ) approach yielded more accurate and unbiased estimates. CONCLUSIONS: We derived ML, pseudo-EM and pseudo-EM+ Δ F methods to estimate Γ in many realistic settings. Estimates are accurate in real and simulated data and have a low computational cost.


Assuntos
Cruzamento , Modelos Genéticos , Linhagem , Animais , Funções Verossimilhança , Cruzamento/métodos , Algoritmos , Ovinos/genética , Genômica/métodos , Simulação por Computador , Masculino , Feminino , Genótipo
2.
Genet Sel Evol ; 56(1): 34, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698373

RESUMO

Metafounders are a useful concept to characterize relationships within and across populations, and to help genetic evaluations because they help modelling the means and variances of unknown base population animals. Current definitions of metafounder relationships are sensitive to the choice of reference alleles and have not been compared to their counterparts in population genetics-namely, heterozygosities, FST coefficients, and genetic distances. We redefine the relationships across populations with an arbitrary base of a maximum heterozygosity population in Hardy-Weinberg equilibrium. Then, the relationship between or within populations is a cross-product of the form Γ b , b ' = 2 n 2 p b - 1 2 p b ' - 1 ' with p being vectors of allele frequencies at n markers in populations b and b ' . This is simply the genomic relationship of two pseudo-individuals whose genotypes are equal to twice the allele frequencies. We also show that this coding is invariant to the choice of reference alleles. In addition, standard population genetics metrics (inbreeding coefficients of various forms; FST differentiation coefficients; segregation variance; and Nei's genetic distance) can be obtained from elements of matrix Γ .


Assuntos
Frequência do Gene , Genética Populacional , Modelos Genéticos , Animais , Genética Populacional/métodos , Heterozigoto , Alelos , Genômica/métodos , Genótipo , Genoma
3.
Hum Mol Genet ; 33(8): 733-738, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38215789

RESUMO

OBJECTIVE: This study aims to identify BMI-associated genes by integrating aggregated summary information from different omics data. METHODS: We conducted a meta-analysis to leverage information from a genome-wide association study (n = 339 224), a transcriptome-wide association study (n = 5619), and an epigenome-wide association study (n = 3743). We prioritized the significant genes with a machine learning-based method, netWAS, which borrows information from adipose tissue-specific interaction networks. We also used the brain-specific network in netWAS to investigate genes potentially involved in brain-adipose interaction. RESULTS: We identified 195 genes that were significantly associated with BMI through meta-analysis. The netWAS analysis narrowed down the list to 21 genes in adipose tissue. Among these 21 genes, six genes, including FUS, STX4, CCNT2, FUBP1, NDUFS3, and RAPSN, were not reported to be BMI-associated in PubMed or GWAS Catalog. We also identified 11 genes that were significantly associated with BMI in both adipose and whole brain tissues. CONCLUSION: This study integrated three types of omics data and identified a group of genes that have not previously been reported to be associated with BMI. This strategy could provide new insights for future studies to identify molecular mechanisms contributing to BMI regulation.


Assuntos
Estudo de Associação Genômica Ampla , Multiômica , Humanos , Índice de Massa Corporal , Estudo de Associação Genômica Ampla/métodos , Transcriptoma , Obesidade/genética , Ciclina T/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética
4.
PLoS Genet ; 19(6): e1010820, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37339141

RESUMO

BACKGROUND: The lack of integrated analysis of genome-wide association studies (GWAS) and 3D epigenomics restricts a deep understanding of the genetic mechanisms of meat-related traits. With the application of techniques as ChIP-seq and Hi-C, the annotations of cis-regulatory elements in the pig genome have been established, which offers a new opportunity to elucidate the genetic mechanisms and identify major genetic variants and candidate genes that are significantly associated with important economic traits. Among these traits, loin muscle depth (LMD) is an important one as it impacts the lean meat content. In this study, we integrated cis-regulatory elements and genome-wide association studies (GWAS) to identify candidate genes and genetic variants regulating LMD. RESULTS: Five single nucleotide polymorphisms (SNPs) located on porcine chromosome 17 were significantly associated with LMD in Yorkshire pigs. A 10 kb quantitative trait locus (QTL) was identified as a candidate functional genomic region through the integration of linkage disequilibrium and linkage analysis (LDLA) and high-throughput chromosome conformation capture (Hi-C) analysis. The BMP2 gene was identified as a candidate gene for LMD based on the integrated results of GWAS, Hi-C meta-analysis, and cis-regulatory element data. The identified QTL region was further verified through target region sequencing. Furthermore, through using dual-luciferase assays and electrophoretic mobility shift assays (EMSA), two SNPs, including SNP rs321846600, located in the enhancer region, and SNP rs1111440035, located in the promoter region, were identified as candidate SNPs that may be functionally related to the LMD. CONCLUSIONS: Based on the results of GWAS, Hi-C, and cis-regulatory elements, the BMP2 gene was identified as an important candidate gene regulating variation in LMD. The SNPs rs321846600 and rs1111440035 were identified as candidate SNPs that are functionally related to the LMD of Yorkshire pigs. Our results shed light on the advantages of integrating GWAS with 3D epigenomics in identifying candidate genes for quantitative traits. This study is a pioneering work for the identification of candidate genes and related genetic variants regulating one key production trait (LMD) in pigs by integrating genome-wide association studies and 3D epigenomics.


Assuntos
Epigenômica , Estudo de Associação Genômica Ampla , Suínos/genética , Animais , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas/genética , Músculos , Fenótipo , Polimorfismo de Nucleotídeo Único
5.
Genet Sel Evol ; 55(1): 17, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932324

RESUMO

BACKGROUND: Dairy cattle production systems are mostly based on purebreds, but recently the use of crossbreeding has received increased interest. For genetic evaluations including crossbreds, several methods based on single-step genomic best linear unbiased prediction (ssGBLUP) have been proposed, including metafounder ssGBLUP (MF-ssGBLUP) and breed-specific ssGBLUP (BS-ssGBLUP). Ideally, models that account for breed effects should perform better than simple models, but knowledge on the performance of these methods is lacking for two-way crossbred cattle. In addition, the differences in the estimates of genetic parameters (such as the genetic variance component and heritability) between these methods have rarely been investigated. Therefore, the aims of this study were to (1) compare the estimates of genetic parameters for average daily gain (ADG) and feed conversion ratio (FCR) between these methods; and (2) evaluate the impact of these methods on the predictive ability for crossbred performance. METHODS: Bivariate models using standard ssGBLUP, MF-ssGBLUP and BS-ssGBLUP for the genetic evaluation of ADG and FCR were investigated. To measure the predictive ability of these three methods, we estimated four estimators, bias, dispersion, population accuracy and ratio of population accuracies, using the linear regression (LR) method. RESULTS: The results show that, for both ADG and FCR, the heritabilities were low with the three methods. For FCR, the differences in the estimated genetic parameters were small between the three methods, while for ADG, those estimated with BS-ssGBLUP deviated largely from those estimated with the other two methods. Bias and dispersion were similar across the three methods. Population accuracies for both ADG and FCR were always higher with MF-ssGBLUP than with ssGBLUP, while with BS-ssGBLUP the population accuracy was highest for FCR and lowest for ADG. CONCLUSIONS: Our results indicate that in the genetic evaluation for crossbred performance in a two-way crossbred cattle production system, the predictive ability of MF-ssGBLUP and BS-ssGBLUP is greater than that of ssGBLUP, when the estimated variance components are consistent across the three methods. Compared with BS-ssGBLUP, MF-ssGBLUP is more robust in its superiority over ssGBLUP.


Assuntos
Genoma , Modelos Genéticos , Bovinos/genética , Animais , Genômica/métodos , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Genótipo , Fenótipo
6.
Genet Sel Evol ; 54(1): 69, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273127

RESUMO

BACKGROUND: At the beginning of genomic selection, some Chinese companies genotyped pigs with different single nucleotide polymorphism (SNP) arrays. The obtained genomic data are then combined and to do this, several imputation strategies have been developed. Usually, only additive genetic effects are considered in genetic evaluations. However, dominance effects that may be important for some traits can be fitted in a mixed linear model as either 'classical' or 'genotypic' dominance effects. Their influence on genomic evaluation has rarely been studied. Thus, the objectives of this study were to use a dataset from Canadian Yorkshire pigs to (1) compare different strategies to combine data from two SNP arrays (Affymetrix 55K and Illumina 42K) and identify the most appropriate strategy for genomic evaluation and (2) evaluate the impact of dominance effects (classical' and 'genotypic') and inbreeding depression effects on genomic predictive abilities for average daily gain (ADG), backfat thickness (BF), loin muscle depth (LMD), days to 100 kg (AGE100), and the total number of piglets born (TNB) at first parity. RESULTS: The reliabilities obtained with the additive genomic models showed that the strategy used to combine data from two SNP arrays had little impact on genomic evaluations. Models with classical or genotypic dominance effect showed similar predictive abilities for all traits. For ADG, BF, LMD, and AGE100, dominance effects accounted for a small proportion (2 to 11%) of the total genetic variance, whereas for TNB, dominance effects accounted for 11 to 20%. For all traits, the predictive abilities of the models increased significantly when genomic inbreeding depression effects were included in the model. However, the inclusion of dominance effects did not change the predictive ability for any trait except for TNB. CONCLUSIONS: Our study shows that it is feasible to combine data from different SNP arrays for genomic evaluation, and that all combination methods result in similar accuracies. Regardless of how dominance effects are fitted in the genomic model, there is no impact on genetic evaluation. Models including inbreeding depression effects outperform a model with only additive effects, even if the trait is not strongly affected by dominant genes.


Assuntos
Depressão por Endogamia , Gravidez , Feminino , Suínos/genética , Animais , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Canadá , Genômica/métodos
7.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35553682

RESUMO

Joint genomic evaluation by combining data recordings and genomic information from different pig herds and populations is of interest for pig breeding companies because the efficiency of genomic selection (GS) could be further improved. In this work, an efficient strategy of joint genomic evaluation combining data from multiple pig populations is investigated. Total teat number (TTN), a trait that is equally recorded on 13,060 American Yorkshire (AY) populations (~14.68 teats) and 10,060 Danish Yorkshire (DY) pigs (~14.29 teats), was used to explore the feasibility and accuracy of GS combining datasets from different populations. We first estimated the genetic correlation (rg) of TTN between AY and DY pig populations (rg = 0.79, se = 0.23). Then we employed the genome-wide association study to identify quantitative trait locus (QTL) regions that are significantly associated with TTN and investigate the genetic architecture of TTN in different populations. Our results suggested that the genomic regions controlling TTN are slightly different in the two Yorkshire populations, where the candidate QTL regions were on SSC 7 and SSC 8 for the AY population and on SSC 7 for the DY population. Finally, we explored an optimal way of genomic prediction for TTN via three different genomic best linear unbiased prediction models and we concluded that when TTN across populations are regarded as different, but correlated, traits in a multitrait model, predictive abilities for both Yorkshire populations improve. As a conclusion, joint genomic evaluation for target traits in multiple pig populations is feasible in practice and more accurate, provided a proper model is used.


This study aimed at investigating joint genomic evaluation by combining data from multiple pig populations. Genomic evaluation is commonly applied in the pig industry to select the best animals to be the parents for the next generation. A bottleneck of genomic evaluation is that the selection accuracy is not high enough. To increase the selection accuracy, in theory, larger datasets are needed. In this article, multiple pig populations were considered together and we explored the feasibility and accuracy of genomic evaluation combining datasets from different populations. To realize the objective, total teat number (TTN), a trait that is equally recorded across different populations, was chosen. We first estimated the genetic correlation of TTN between American and Danish Yorkshire pig populations. Then to interpret why such genetic correlation was obtained, we employed the genome-wide association study to identify quantitative trait locus regions that are significantly associated with TTN and investigated the genetic architecture of TTN in different populations. Finally, we explored an optimal way of genomic prediction for TTN via three different genomic models and we concluded that when TTN across populations are regarded as different, but correlated, traits in a multitrait model, predictive abilities for both Yorkshire populations improve.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Dinamarca , Estudo de Associação Genômica Ampla/veterinária , Genômica/métodos , Genótipo , Fenótipo , Locos de Características Quantitativas , Suínos/genética
8.
J Anim Sci ; 99(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34110414

RESUMO

Semen traits are crucial in commercial pig production since semen from boars is widely used in artificial insemination for both purebred and crossbred pig production. Revealing the genetic architecture of semen traits potentially promotes the efficiencies of improving semen traits through artificial selection. This study is aimed to identify candidate genes related to the semen traits in Duroc boars. First, we identified the genes that were significantly associated with three semen traits, including sperm motility (MO), sperm concentration (CON), and semen volume (VOL) in a Duroc boar population through a genome-wide association study (GWAS). Second, we performed a weighted gene co-expression network analysis (WGCNA). A total of 2, 3, and 20 single-nucleotide polymorphisms were found to be significantly associated with MO, CON, and VOL, respectively. Based on the haplotype block analysis, we identified one genetic region associated with MO, which explained 6.15% of the genetic trait variance. ENSSSCG00000018823 located within this region was considered as the candidate gene for regulating MO. Another genetic region explaining 1.95% of CON genetic variance was identified, and, in this region, B9D2, PAFAH1B3, TMEM145, and CIC were detected as the CON-related candidate genes. Two genetic regions that accounted for 2.23% and 2.48% of VOL genetic variance were identified, and, in these two regions, WWC2, CDKN2AIP, ING2, TRAPPC11, STOX2, and PELO were identified as VOL-related candidate genes. WGCNA analysis showed that, among these candidate genes, B9D2, TMEM145, WWC2, CDKN2AIP, TRAPPC11, and PELO were located within the most significant module eigengenes, confirming these candidate genes' role in regulating semen traits in Duroc boars. The identification of these candidate genes can help to better understand the genetic architecture of semen traits in boars. Our findings can be applied for semen traits improvement in Duroc boars.


Assuntos
Estudo de Associação Genômica Ampla , Sêmen , Animais , Estudo de Associação Genômica Ampla/veterinária , Masculino , Polimorfismo de Nucleotídeo Único , Análise do Sêmen/veterinária , Contagem de Espermatozoides/veterinária , Motilidade dos Espermatozoides/genética , Suínos/genética
9.
BMC Genomics ; 22(1): 294, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888058

RESUMO

BACKGROUND: The feed conversion ratio (FCR) is an important productive trait that greatly affects profits in the pig industry. Elucidating the genetic mechanisms underpinning FCR may promote more efficient improvement of FCR through artificial selection. In this study, we integrated a genome-wide association study (GWAS) with transcriptome analyses of different tissues in Yorkshire pigs (YY) with the aim of identifying key genes and signalling pathways associated with FCR. RESULTS: A total of 61 significant single nucleotide polymorphisms (SNPs) were detected by GWAS in YY. All of these SNPs were located on porcine chromosome (SSC) 5, and the covered region was considered a quantitative trait locus (QTL) region for FCR. Some genes distributed around these significant SNPs were considered as candidates for regulating FCR, including TPH2, FAR2, IRAK3, YARS2, GRIP1, FRS2, CNOT2 and TRHDE. According to transcriptome analyses in the hypothalamus, TPH2 exhibits the potential to regulate intestinal motility through serotonergic synapse and oxytocin signalling pathways. In addition, GRIP1 may be involved in glutamatergic and GABAergic signalling pathways, which regulate FCR by affecting appetite in pigs. Moreover, GRIP1, FRS2, CNOT2, and TRHDE may regulate metabolism in various tissues through a thyroid hormone signalling pathway. CONCLUSIONS: Based on the results from GWAS and transcriptome analyses, the TPH2, GRIP1, FRS2, TRHDE, and CNOT2 genes were considered candidate genes for regulating FCR in Yorkshire pigs. These findings improve the understanding of the genetic mechanisms of FCR and may help optimize the design of breeding schemes.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Animais , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Suínos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA