Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Cancer ; 207: 114144, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852290

RESUMO

PURPOSE: Providing patient access to precision oncology (PO) is a major challenge of clinical oncologists. Here, we provide an easily transferable model from strategic management science to assess the outreach of a cancer center. METHODS: As members of the German WERA alliance, the cancer centers in Würzburg, Erlangen, Regensburg and Augsburg merged care data regarding their geographical impact. Specifically, we examined the provenance of patients from WERA´s molecular tumor boards (MTBs) between 2020 and 2022 (n = 2243). As second dimension, we added the provenance of patients receiving general cancer care by WERA. Clustering our catchment area along these two dimensions set up a four-quadrant matrix consisting of postal code areas with referrals towards WERA. These areas were re-identified on a map of the Federal State of Bavaria. RESULTS: The WERA matrix overlooked an active screening area of 821 postal code areas - representing about 50 % of Bavaria´s spatial expansion and more than six million inhabitants. The WERA matrix identified regions successfully connected to our outreach structures in terms of subsidiarity - with general cancer care mainly performed locally but PO performed in collaboration with WERA. We also detected postal code areas with a potential PO backlog - characterized by high levels of cancer care performed by WERA and low levels or no MTB representation. CONCLUSIONS: The WERA matrix provided a transparent portfolio of postal code areas, which helped assessing the geographical impact of our PO program. We believe that its intuitive principle can easily be transferred to other cancer centers.


Assuntos
Acessibilidade aos Serviços de Saúde , Oncologia , Neoplasias , Medicina de Precisão , Humanos , Alemanha , Acessibilidade aos Serviços de Saúde/organização & administração , Neoplasias/terapia , Oncologia/organização & administração , Institutos de Câncer/organização & administração , População Rural
2.
J Mol Diagn ; 26(5): 387-398, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395409

RESUMO

Small blue round cell sarcomas (SBRCSs) are a heterogeneous group of tumors with overlapping morphologic features but markedly varying prognosis. They are characterized by distinct chromosomal alterations, particularly rearrangements leading to gene fusions, whose detection currently represents the most reliable diagnostic marker. Ewing sarcomas are the most common SBRCSs, defined by gene fusions involving EWSR1 and transcription factors of the ETS family, and the most frequent non-EWSR1-rearranged SBRCSs harbor a CIC rearrangement. Unfortunately, currently the identification of CIC::DUX4 translocation events, the most common CIC rearrangement, is challenging. Here, we present a machine-learning approach to support SBRCS diagnosis that relies on gene expression profiles measured via targeted sequencing. The analyses on a curated cohort of 69 soft-tissue tumors showed markedly distinct expression patterns for SBRCS subgroups. A random forest classifier trained on Ewing sarcoma and CIC-rearranged cases predicted probabilities of being CIC-rearranged >0.9 for CIC-rearranged-like sarcomas and <0.6 for other SBRCSs. Testing on a retrospective cohort of 1335 routine diagnostic cases identified 15 candidate CIC-rearranged tumors with a probability >0.75, all of which were supported by expert histopathologic reassessment. Furthermore, the multigene random forest classifier appeared advantageous over using high ETV4 expression alone, previously proposed as a surrogate to identify CIC rearrangement. Taken together, the expression-based classifier can offer valuable support for SBRCS pathologic diagnosis.


Assuntos
Sarcoma de Células Pequenas , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Estudos Retrospectivos , Sarcoma de Células Pequenas/diagnóstico , Sarcoma de Células Pequenas/genética , Sarcoma de Células Pequenas/patologia , Fatores de Transcrição/genética , Sarcoma/genética , Neoplasias de Tecidos Moles/genética , Análise de Sequência de RNA , Proteínas de Fusão Oncogênica/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise
3.
Cancers (Basel) ; 15(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38136436

RESUMO

Molecular Tumor Boards (MTBs) converge state-of-the-art next-generation sequencing (NGS) methods with the expertise of an interdisciplinary team consisting of clinicians, pathologists, human geneticists, and molecular biologists to provide molecularly informed guidance in clinical decision making to the treating physician. In the present study, we particularly focused on elucidating the factors impacting on the clinical translation of MTB recommendations, utilizing data generated from gene panel mediated comprehensive genomic profiling (CGP) of 554 patients at the MTB of the Comprehensive Cancer Center Erlangen, Germany, during the years 2016 to 2020. A subgroup analysis of cases with available follow-up data (n = 332) revealed 139 cases with a molecularly informed MTB recommendation, which was successfully implemented in the clinic in 44 (31.7%) of these cases. Here, the molecularly matched treatment was applied in 45.4% (n = 20/44) of cases for ≥6 months and in 25% (n = 11/44) of cases for 12 months or longer (median time to treatment failure, TTF: 5 months, min: 1 month, max: 38 months, ongoing at data cut-off). In general, recommendations were preferentially implemented in the clinic when of high (i.e., tier 1) clinical evidence level. In particular, this was the case for MTB recommendations suggesting the application of PARP, PIK3CA, and IDH1/2 inhibitors. The main reason for non-compliance to the MTB recommendation was either the application of non-matched treatment modalities (n = 30)/stable disease (n = 7), or deteriorating patient condition (n = 22)/death of patient (n = 9). In summary, this study provides an insight into the factors affecting the clinical implementation of molecularly informed MTB recommendations, and careful considerations of these factors may guide future processes of clinical decision making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA