Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 15(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392532

RESUMO

The foraging activity of honey bees used to pollinate almonds was examined in relation to their hive entrance orientation and colony strength. Twenty-four colonies of honey bees, twelve in each group, were situated with their entrances facing east and west cardinal points. Bee out counts were recorded continuously and hive weight data at ∼10 min intervals from 17 February to 15 March 2023. Colony strength was assessed using the frames of adult bees (FOB) metric. East-facing hives started flight 44.2 min earlier than west-facing hives. The hive direction did not affect the timing of the cessation of foraging activity. The hive strength played a significant role: hives assessed as weak (≤3.0 FOB) commenced foraging activity 45 min later than strong hives (>3.0 FOB) and ceased foraging activity 38.3 min earlier. Hive weight data did not detect effects of either the hive direction or colony strength on the commencement and cessation of foraging activity, as determined using piecewise regression on 24 h datasets. However, the hive weight loss due to foraging activity at the start of foraging activity was significantly affected by both direction (East > West) and colony strength (Strong > Weak). Our study showed that, during almond pollination, both hive entrance exposure and hive strength have quantifiable effects on colony foraging behaviour and that these effects combine to regulate the overall foraging activity of the pollinating colonies.

2.
Sci Rep ; 13(1): 11842, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481663

RESUMO

Placing honey bee colonies in cold storage has been proposed as a way to induce a pause in brood production as part of a Varroa mite treatment plan. Here, we exposed colonies to combinations of with or without an October cold storage period and with or without a subsequent miticide application. We then measured the effects of those treatments on colony-level variables (i.e. colony size, Varroa infestation level, survivorship and hive weight and temperature) and pooled individual-level variables that are associated with nutritional and stress responses. Colonies were assessed before and after cold storage, and again post winter, for a total duration of about 5 months, and the experiment was repeated. Brood levels were significantly lower after cold storage, and hive temperatures indicated that most or all brood had emerged after about two weeks in cold storage. However, Varroa levels at the end of the experiments in February were not significantly different among treatment groups. Colonies kept outside (not subjected to cold storage) and treated with a miticide had higher survivorship on average than any other treatment group, but no other group comparisons were significant, and long-term impact of cold storage on adult bee populations and on colony thermoregulation was low. The bee forage environment was also very different between the 2 years of the study, as rainfall and bee forage availability were much higher the second year. Colonies were over 2.5 times larger on average the second year compared to the first, both in terms of adult bee mass and brood area, and expression levels of nutrition and stress response genes were also significantly higher the second year. The results indicate that limited cold storage would likely have little long-term impact on most colony and individual measures of health, but for such a strategy to succeed levels of stressors, such as Varroa, may also need to be low.


Assuntos
Acaricidas , Varroidae , Animais , Abelhas , Varroidae/fisiologia , Acaricidas/farmacologia , Estações do Ano , Temperatura
3.
Insects ; 13(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36135546

RESUMO

The extent to which insecticides harm non-target beneficial insects is controversial. The effects of long-term exposure on honey bees to sublethal concentrations of flonicamid, a pyridinecarboxamide compound used as a systemic insecticide against sucking insects, were examined in a field study and two cage studies. The field study involved the continuous weight, temperature, and CO2 monitoring of 18 honey bee colonies, 6 of which were exposed over six weeks to 50 ppb flonicamid in sugar syrup, 6 exposed to 250 ppb flonicamid in syrup, and 6 exposed to unadulterated syrup (control). Treatments were derived from concentrations observed in honey samples in a published study. No effects were observed on foraging activity, hive weight gain, thermoregulation, or average CO2 concentrations. However, Varroa mite infestations may have also contributed to experimental variability. The two cage studies, in which cages (200 newly-emerged bees in each) were exposed to the same flonicamid concentrations as the field study and kept in a variable-temperature incubator, likewise did not show any experiment-wide effects on survivorship, thermoregulation, or syrup consumption. These results suggest that field applications of flonicamid that result in concentrations as high as 250 ppb in honey may be largely safe for honey bees.

4.
Ecotoxicol Environ Saf ; 231: 113202, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35051760

RESUMO

How neonicotinoid contamination affects honey bees remains controversial. Studies have yielded contradictory results, and few have examined effects on colony development. Here we report the results of a comprehensive five-year study of the effects of the neonicotinoid imidacloprid on honey bee colonies. Colonies fed 5 ng/g (ppb) imidacloprid in sugar syrup showed increased brood production, lower temperature variability, higher CO2 production and had more foragers compared to control colonies fed unadulterated syrup, but treatment did not affect adult bee numbers or average hive temperatures, and did not increase food stores, daily food acquisition or colony survivorship. These results suggest that imidacloprid contamination increased colony metabolism without improving colony productivity, and helps explain why some studies have reported no, or even positive, effects of neonicotinoids. Effect sizes were generally small but that could be attributed at least in part to variability in uncontrolled factors such as weather. We provide an explanation for the diverse effects of pesticide contamination on honey bees, and an improved understanding of how colonies are impacted.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Inseticidas/toxicidade , Longevidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Praguicidas/toxicidade
5.
Sci Rep ; 11(1): 4364, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623125

RESUMO

The effects of agricultural pesticide exposure upon honey bee colonies is of increasing interest to beekeepers and researchers, and the impact of neonicotinoid pesticides in particular has come under intense scrutiny. To explore potential colony-level effects of a neonicotinoid pesticide at field-relevant concentrations, honey bee colonies were fed 5- and 20-ppb concentrations of clothianidin in sugar syrup while control colonies were fed unadulterated syrup. Two experiments were conducted in successive years at the same site in southern Arizona, and one in the high rainfall environment of Mississippi. Across all three experiments, adult bee masses were about 21% lower among colonies fed 20-ppb clothianidin than the untreated control group, but no effects of treatment on brood production were observed. Average daily hive weight losses per day in the 5-ppb clothianidin colonies were about 39% lower post-treatment than in the 20-ppb clothianidin colonies, indicating lower consumption and/or better foraging, but the dry weights of newly-emerged adult bees were on average 6-7% lower in the 5-ppb group compared to the other groups, suggesting a nutritional problem in the 5-ppb group. Internal hive CO2 concentration was higher on average in colonies fed 20-ppb clothianidin, which could have resulted from greater CO2 production and/or reduced ventilating activity. Hive temperature average and daily variability were not affected by clothianidin exposure but did differ significantly among trials. Clothianidin was found to be, like imidacloprid, highly stable in honey in the hive environment over several months.


Assuntos
Abelhas/efeitos dos fármacos , Guanidinas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiazóis/toxicidade , Animais , Abelhas/metabolismo , Abelhas/fisiologia , Dióxido de Carbono/metabolismo , Comportamento Alimentar , Comportamento Social
6.
Sci Rep ; 10(1): 5013, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193405

RESUMO

Colony brood levels, frames of bees (adult bee mass) and internal hive temperature were monitored for 60 colonies for each of two years as they were moved from agricultural, tree crop and mountain landscapes in southern California to blueberry and almond pollination sites. Hive weight was also continuously monitored for 20 of those hives for 6 weeks for both years, during commercial pollination. Pesticide residues in wax, honey and beebread samples were analyzed by composite apiary samples. While colonies in mountain sites had more adult bees and brood than those in agricultural sites in August, by October brood levels were higher in colonies from agricultural sites. Though hives from different original landscapes differed in size in October, hive assessments revealed no differences between the groups after co-wintering when graded for commercial almond pollination. Beebread from hives in agricultural sites had greater agrochemical diversity and in general higher pesticide hazard quotients than those from mountain sites, but those hives also had higher and more constant temperatures from September until January than hives from mountain sites. Hives placed in commercial almond pollination gained on average 287 g per d, compared to an average loss of 68 g per d for colonies in commercial blueberry pollination, although weight data indicated greater foraging effort by colonies in blueberries, possibly due to the proximity and abundance of almond pollen during bloom. Temperature monitoring was effective at distinguishing hive groups and had the best overall value in terms of equipment, installation, colony disturbance and information yield.


Assuntos
Agricultura , Abelhas/fisiologia , Ecossistema , Mel , Comportamento de Nidação/fisiologia , Polinização , Temperatura , Animais , Mirtilos Azuis (Planta) , California , Mel/análise , Resíduos de Praguicidas/análise , Pólen , Própole/química , Prunus dulcis
7.
Environ Sci Technol ; 53(14): 8252-8261, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31257879

RESUMO

There is increasing worldwide concern about the impacts of pesticide residues on honey bees and bee colony survival, but how sublethal effects of pesticides on bees might cause colony failure remains highly controversial, with field data giving very mixed results. To explore how trace levels of the neonicotinoid pesticide imidacloprid impacted colony foraging performance, we equipped bees with RFID tags that allowed us to track their lifetime flight behavior. One group of bees was exposed to a trace concentration (5 µg/kg, ppb) of imidacloprid in sugar syrup while in the larval stage. The imidacloprid residues caused bees to start foraging when younger as adults and perform fewer orientation flights, and reduced their lifetime foraging flights by 28%. The magnitude of the effects of a trace imidacloprid concentration delivered only during larval stage highlights the severity of pesticide residues for bee foraging performance. Our data suggest that neonicotinoids could impact colony function by imbalancing the normal age based division of labor in a colony and reducing foraging efficiency. Understanding this mechanism will help the development of interventions to safeguard bee colony health.


Assuntos
Inseticidas , Resíduos de Praguicidas , Praguicidas , Animais , Abelhas , Larva , Neonicotinoides , Nitrocompostos
8.
Sci Total Environ ; 677: 660-670, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31071668

RESUMO

Pesticide residues have been linked to reduced bee health and increased honey bee colony failure. Most research to date has investigated the role of pesticides on individual honey bees, and it is still unclear how trace levels of pesticides change colony viability and productivity over seasonal time scales. To address this question we exposed standard bee colonies to chemical stressors known to have negative effects on individual bees, and measured the productivity of bee colonies across a whole year in two environments: near Tucson Arizona and Sydney Australia. We exposed hives to a trace amount of the neonicotinoid imidacloprid and to the acaricide thymol, and measured capped brood, bee and honey production, as well as the temperature and foraging force of the colonies. The effect of imidacloprid on colony dynamics differed between the two environments. In Tucson we recorded a positive effect of imidacloprid treatment on bee and brood numbers. Thymol was associated with short-term negative effects on bee numbers at both locations, and may have affected colony survival at one location. The overall benefits of thymol for the colonies were unclear. We conclude that long-term and colony-level measures of the effects of agrochemicals are needed to properly understand risks to bees.


Assuntos
Acaricidas/efeitos adversos , Abelhas/efeitos dos fármacos , Inseticidas/efeitos adversos , Neonicotinoides/efeitos adversos , Nitrocompostos/efeitos adversos , Timol/efeitos adversos , Animais , Arizona , Criação de Abelhas , Abelhas/fisiologia , Meio Ambiente , Comportamento Alimentar/efeitos dos fármacos , New South Wales , Resíduos de Praguicidas/efeitos adversos , Dinâmica Populacional , Distribuição Aleatória , Varroidae
9.
Evol Appl ; 12(4): 815-829, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976312

RESUMO

Parasitic wasps are among the most species-rich groups on Earth. A major cause of this diversity may be local adaptation to host species. However, little is known about variation in host specificity among populations within parasitoid species. Not only is such knowledge important for understanding host-driven speciation, but because parasitoids often control pest insects and narrow host ranges are critical for the safety of biological control introductions, understanding variation in specificity and how it arises are crucial applications in evolutionary biology. Here, we report experiments on variation in host specificity among 16 populations of an aphid parasitoid, Aphelinus certus. We addressed several questions about local adaptation: Do parasitoid populations differ in host ranges or in levels of parasitism of aphid species within their host range? Are differences in parasitism among parasitoid populations related to geographical distance, suggesting clinal variation in abundances of aphid species? Or do nearby parasitoid populations differ in host use, as would be expected if differences in aphid abundances, and thus selection, were mosaic? Are differences in parasitism among parasitoid populations related to genetic distances among them? To answer these questions, we measured parasitism of a taxonomically diverse group of aphid species in laboratory experiments. Host range was the same for all the parasitoid populations, but levels of parasitism varied among aphid species, suggesting adaptation to locally abundant aphids. Differences in host specificity did not correlate with geographical distances among parasitoid populations, suggesting that local adaption is mosaic rather than clinal, with a spatial scale of less than 50 kilometers. We sequenced and assembled the genome of A. certus, made reduced-representation libraries for each population, analyzed for single nucleotide polymorphisms, and used these polymorphisms to estimate genetic differentiation among populations. Differences in host specificity correlated with genetic distances among the parasitoid populations.

10.
Sci Rep ; 9(1): 4894, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894619

RESUMO

Honey bee colony performance and health are intimately linked to the foraging environment. Recent evidence suggests that the US Conservation Reserve Program (CRP) has a positive impact on environmental suitability for supporting honey bee apiaries. However, relatively little is known about the influence of habitat conservation efforts on honey bee colony health. Identifying specific factors that influence bee health at the colony level incorporates longitudinal monitoring of physiology across diverse environments. Using a pooled-sampling method to overcome individual variation, we monitored colony-level molecular biomarkers during critical pre- and post-winter time points. Major categories of colony health (nutrition, oxidative stress resistance, and immunity) were impacted by apiary site. In general, apiaries within foraging distance of CRP lands showed improved performance and higher gene expression of vitellogenin (vg), a nutritionally regulated protein with central storage and regulatory functions. Mirroring vg levels, gene transcripts encoding antioxidant enzymes and immune-related proteins were typically higher in colonies exposed to CRP environments. Our study highlights the potential of CRP lands to improve pollinator health and the utility of colony-level molecular diagnostics to assess environmental suitability for honey bees.


Assuntos
Criação de Abelhas , Abelhas/fisiologia , Conservação dos Recursos Naturais , Animais , Ecossistema , Estado Nutricional , Estações do Ano , Vitelogeninas/metabolismo
11.
PLoS One ; 14(3): e0204635, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921332

RESUMO

Methoxyfenozide is an insect growth regulator (IGR) commonly used in agriculture to simultaneously control pests and preserve beneficial insect populations; however, its impact on honey bees in not fully understood. We conducted field and laboratory experiments to investigate bee health in response to field-relevant concentrations of this pesticide. Significant effects were observed in honey bee colony flight activity and thermoregulation after being exposed over 9 weeks to supplemental protein patty containing methoxyfenozide. Compared to bee colonies in the control group, colonies fed pollen patty with 200 ppb methoxyfenozide (as measured by residue analysis) had: 1) a significantly reduced rate of weight loss due to forager departure in the morning; and 2) higher temperature variability during the winter. Colonies in the 100 ppb (as measured by residue analysis) treatment group had values between the 200 ppb group and control for both response variables. The dusk break point, which is the time associated with the end of forager return, differed among all treatment groups but may have been confounded with direction the hives were facing. Bee colony metrics of adult bee mass and brood surface area, and measurements of bee head weight, newly-emerged bee weight, and hypopharyngeal gland size were not significantly affected by methoxyfenozide exposure, suggesting that there may be significant effects on honey bee colony behavior and health in the field that are difficult to detect using standard methods for assessing bee colonies and individuals. The second experiment was continued into the following spring, using the same treatment groups as in the fall. Fewer differences were observed among groups in the spring than the fall, possibly because of abundant spring forage and consequent reduced treatment patty consumption. Residue analyses showed that: 1) observed methoxyfenozide concentrations in treatment patty were about 18-60% lower than the calculated concentrations; 2) no residues were observed in wax in any treatment; and 3) methoxyfenozide was detected in bee bread only in the 200 ppb treatment group, at about 1-2.5% of the observed patty concentration.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/crescimento & desenvolvimento , Regulação da Temperatura Corporal/efeitos dos fármacos , Hidrazinas/toxicidade , Inseticidas/toxicidade , Hormônios Juvenis/metabolismo , Pólen/química , Animais , Abelhas/metabolismo , Hormônios Juvenis/toxicidade , Estações do Ano
12.
Insects ; 9(4)2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513723

RESUMO

Electronic devices to sense, store, and transmit data are undergoing rapid development, offering an ever-expanding toolbox for inventive minds. In apiculture, both researchers and practitioners have welcomed the opportunity to equip beehives with a variety of sensors to monitor hive weight, temperature, forager traffic and more, resulting in huge amounts of accumulated data. The problem remains how to distil biological meaning out of these data. In this paper, we address the analysis of beehive weight monitored at a 15-min resolution over several months. Inspired by an overlooked, classic study on such weight curves we derive algorithms and statistical procedures to allow biological interpretation of the data. Our primary finding was that an early morning dip in the weight curve ('Breakfast Canyon') could be extracted from the data to provide information on bee colony performance in terms of foraging effort. We include the data sets used in this study, together with R scripts that will allow other researchers to replicate or refine our method.

13.
PLoS One ; 13(10): e0205816, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30325960

RESUMO

Precise, objective data on brood and honey levels in honey bee colonies can be obtained through the analysis of hive frame photographs. However, accurate analysis of all the frame photographs from medium- to large-scale experiments is time-consuming. This limits the number of hives than can be practically included in honeybee studies. Faster estimation methods exist but they significantly decrease precision and their use requires a larger sample size to maintain statistical power. To resolve this issue, we created 'CombCount' a python program that automatically detects uncapped cells to speed up measurements of capped brood and capped honey on photos of frames. CombCount does not require programming skills, it was designed to facilitate colony-level research in honeybees and to provide a fast, free, and accurate alternative to older methods based on visual estimations. Six observers measured the same photos of thirty different frames both with CombCount and by manually outlining the entire capped areas with ImageJ. The results obtained were highly similar between both the observers and the two methods, but measurements with CombCount were 3.2 times faster than with ImageJ (4 and 13 min per side of the frame, respectively) and all observers were faster when using CombCount rather than ImageJ. CombCount was used to measure the proportions of capped brood and capped honey on each frame of 16 hives over a year as they developed from packages to full-size colonies over about 60 days. Our data describe the formation of brood and honey stores during the establishment of a new colony.


Assuntos
Abelhas/fisiologia , Comportamento Animal , Mel , Comunicação Animal , Animais , Processamento de Imagem Assistida por Computador , Luz , Variações Dependentes do Observador , Reconhecimento Automatizado de Padrão , Linguagens de Programação , Reprodutibilidade dos Testes , Software
14.
Insects ; 9(2)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899302

RESUMO

In order to study the in situ effects of the agricultural landscape and exposure to pesticides on honey bee health, sixteen honey bee colonies were placed in four different agricultural landscapes. Those landscapes were three agricultural areas with varying levels of agricultural intensity (AG areas) and one non-agricultural area (NAG area). Colonies were monitored for different pathogen prevalence and pesticide residues over a period of one year. RT-qPCR was used to study the prevalence of seven different honey bee viruses as well as Nosema sp. in colonies located in different agricultural systems with various intensities of soybean, corn, sorghum, and cotton production. Populations of the parasitic mite Varroa destructor were also extensively monitored. Comprehensive MS-LC pesticide residue analyses were performed on samples of wax, honey, foragers, winter bees, dead bees, and crop flowers for each apiary and location. A significantly higher level of varroa loads were recorded in colonies of the AG areas, but this at least partly correlated with increased colony size and did not necessarily result from exposure to pesticides. Infections of two viruses (deformed wing virus genotype a (DWVa) and acute bee paralysis virus (ABPV)) and Nosema sp. varied among the four studied locations. The urban location significantly elevated colony pathogen loads, while AG locations significantly benefited and increased the colony weight gain. Cotton and sorghum flowers contained high concentrations of insecticide including neonicotinoids, while soybean and corn had less pesticide residues. Several events of pesticide toxicity were recorded in the AG areas, and high concentrations of neonicotinoid insecticides were detected in dead bees.

15.
PLoS One ; 13(5): e0197589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29791462

RESUMO

Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony's daily activity cycle, hive weight change at night, hive weight loss due to departing foragers and weight gain due to returning foragers. Assumptions about the meaning of the timing and size of the morning weight changes were tested in a third study by delaying the forager departure times from one to three hours using screen entrance gates. A regression of planned vs. observed departure delays showed that the initial hive weight loss around dawn was largely due to foragers. In a similar experiment in Australia, hive weight loss due to departing foragers in the morning was correlated with net bee traffic (difference between the number of departing bees and the number of arriving bees) and from those data the payload of the arriving bees was estimated to be 0.02 g. The piecewise regression approach was then used to analyze a fifth study involving hives with and without access to natural forage. The analysis showed that, during a commercial pollination event, hives with previous access to forage had a significantly higher rate of weight gain as the foragers returned in the afternoon, and, in the weeks after the pollination event, a significantly higher rate of weight loss in the morning, as foragers departed. This combination of continuous weight data and piecewise regression proved effective in detecting treatment differences in foraging activity that other methods failed to detect.


Assuntos
Abelhas , Meio Ambiente , Animais , Conjuntos de Dados como Assunto , Feminino , Modelos Biológicos , Análise de Regressão , Pesos e Medidas
16.
Microb Ecol ; 76(3): 814-824, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29397399

RESUMO

Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees' microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.


Assuntos
Bactérias/isolamento & purificação , Abelhas/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Abelhas/fisiologia , Trato Gastrointestinal/microbiologia , Filogenia , Polinização , Simbiose
17.
Front Plant Sci ; 9: 1891, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619436

RESUMO

There is interest in using ligands of chemosensory binding proteins (CBP) to augment an insect's responsiveness to chemosensory cues. We showed previously that combining a synthetic ligand of a CBP with limonene, a common citrus volatile, enhanced the probing response of Asian citrus psyllid (Diaphorina citri). Here, we determined whether synthetic compounds, which were ligands of D. citri olfactory binding protein (OBP) DCSAP4, influenced the settling and aggregation levels of psyllids on young citrus shoots. The test ligands and Cmac scent were dispensed from a droplet of an emulsified wax product (SPLAT) placed on the bottom of each vial. The shoots were presented: (1) alone (shoot + blank SPLAT), (2) with a mixture of citrus volatiles ("Cmac scent") (shoot + SPLAT with Cmac scent), or (3) with different concentrations of test ligands (shoot + SPLAT with test ligand at concentration 1, shoot + SPLAT with test ligand at concentration 2, etc.). Depending on the availability of test ligands, sprigs, and psyllids, each test included from two to four replicates of each treatment (i.e., shoot only, shoot + Cmac scent, shoot + test ligand at concentration 1, shoot + test ligand at concentration 2, etc.); only a single test ligand was presented in each test. For each test, 200 D. citri were released in the test area and the numbers of psyllids on each sprig were counted 24 h later. Sprigs with ≥7 psyllids were considered to be an aggregation. A total of seven ligands were tested individually. Four of the ligands (654, 717, 784, and 861) modulated psyllid settling and aggregation response, causing greater settling and aggregation to sprigs presented with the Cmac scent than to those sprigs with blank SPLAT. Presentation of one of the ligands (019) resulted in an opposite effect in which psyllid settling and aggregation levels were lower on sprigs with Cmac scent than on those with blank SPLAT. There were no differences in settling levels in the different treatment vials in the Ligand 905 experiment. In the Ligand 937 experiment, settling levels did not vary significantly between treatment vials although settling levels were relatively high in all treatment vials and there was a significant treatment effect. Increased settling and aggregation levels were largely not observed with in the vials with only the test ligands, and there was little effect of ligand concentration on psyllid response levels. This suggests that the test ligands themselves did not attract the psyllids but rather modulated the psyllid's response to the Cmac scent. The results suggest that synthetic ligands of D. citri CBPs can be used to increase the effectiveness of citrus scent lures used to attract psyllids to monitoring traps and attract and kill devices.

18.
J Vis Exp ; (129)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29286367

RESUMO

The effects of sublethal pesticide exposure to honey bee colonies may be significant but difficult to detect in the field using standard visual assessment methods. Here we describe methods to measure the quantities of adult bees, brood, and food resources by weighing hives and hive parts, by photographing frames, and by installing hives on scales and with internal sensors. Data from these periodic evaluations are then combined with running average and daily detrended data on hive weight and internal hive temperature. The resulting datasets have been used to detect colony-level effects of imidacloprid applied in a sugar syrup as low as 5 parts per billion. The methods are objective, require little training, and provide permanent records in the form of sensor output and photographs.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Praguicidas/toxicidade , Animais , Abelhas/crescimento & desenvolvimento , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Fotografação
19.
J Econ Entomol ; 110(3): 835-847, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398581

RESUMO

Sixteen honey bee (Apis mellifera L.) colonies were placed in four different agricultural landscapes to study the effects of agricultural landscape and exposure to pesticides on honey bee health. Colonies were located in three different agricultural areas with varying levels of agricultural intensity (AG areas) and one nonagricultural area (NAG area). Colonies were monitored for their performance and productivity for one year by measuring colony weight changes, brood production, and colony thermoregulation. Palynological and chemical analyses were conducted on the trapped pollen collected from each colony and location. Our results indicate that the landscape's composition significantly affected honey bee colony performance and development. Colony weight and brood production were significantly greater in AG areas compared to the NAG area. Better colony thermoregulation in AG areas' colonies was also observed. The quantities of pesticides measured in the trapped pollen were relatively low compared to their acute toxicity. Unexplained queen and colony losses were recorded in the AG areas, while colony losses because of starvation were observed in the NAG area. Our results indicate that landscape with high urban activity enhances honey bee brood production, with no significant effects on colony weight gain. Our study indicates that agricultural crops provide a valuable resource for honey bee colonies, but there is a trade-off with an increased risk of exposure to pesticides.


Assuntos
Agricultura/métodos , Abelhas/fisiologia , Inseticidas/toxicidade , Animais , Criação de Abelhas , Abelhas/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Tennessee
20.
PLoS One ; 11(12): e0168603, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28030617

RESUMO

Imidacloprid is a neonicotinoid pesticide heavily used by the agricultural industry and shown to have negative impacts on honey bees above certain concentrations. We evaluated the effects of different imidacloprid concentrations in sugar syrup using cage and field studies, and across different environments. Honey bee colonies fed sublethal concentrations of imidicloprid (0, 5, 20 and 100 ppb) over 6 weeks in field trials at a desert site (Arizona), a site near intensive agriculture (Arkansas) and a site with little nearby agriculture but abundant natural forage (Mississippi) were monitored with respect to colony metrics, such as adult bee and brood population sizes, as well as pesticide residues. Hive weight and internal hive temperature were monitored continuously over two trials in Arizona. Colonies fed 100 ppb imidacloprid in Arizona had significantly lower adult bee populations, brood surface areas and average frame weights, and reduced temperature control, compared to colonies in one or more of the other treatment groups, and consumption rates of those colonies were lower compared to other colonies in Arizona and Arkansas, although no differences in capped brood or average frame weight were observed among treatments in Arkansas. At the Mississippi site, also rich in alternative forage, colonies fed 5 ppb imidacloprid had less capped brood than control colonies, but contamination of control colonies was detected. In contrast, significantly higher daily hive weight variability among colonies fed 5 ppb imidacloprid in Arizona suggested greater foraging activity during a nectar flow post treatment, than any other treatment group. Imidacloprid concentrations in stored honey corresponded well with the respective syrup concentrations fed to the colonies and remained stable within the hive for at least 7 months after the end of treatment.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/crescimento & desenvolvimento , Imidazóis/efeitos adversos , Inseticidas/efeitos adversos , Nitrocompostos/efeitos adversos , Animais , Abelhas/metabolismo , Neonicotinoides , Praguicidas/efeitos adversos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA