Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 19(2): 205-215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132245

RESUMO

Transgenic expression of bacterial nitroreductase (NTR) enzymes sensitizes eukaryotic cells to prodrugs such as metronidazole (MTZ), enabling selective cell-ablation paradigms that have expanded studies of cell function and regeneration in vertebrates. However, first-generation NTRs required confoundingly toxic prodrug treatments to achieve effective cell ablation, and some cell types have proven resistant. Here we used rational engineering and cross-species screening to develop an NTR variant, NTR 2.0, which exhibits ~100-fold improvement in MTZ-mediated cell-specific ablation efficacy, eliminating the need for near-toxic prodrug treatment regimens. NTR 2.0 therefore enables sustained cell-loss paradigms and ablation of previously resistant cell types. These properties permit enhanced interrogations of cell function, extended challenges to the regenerative capacities of discrete stem cell niches, and novel modeling of chronic degenerative diseases. Accordingly, we have created a series of bipartite transgenic reporter/effector resources to facilitate dissemination of NTR 2.0 to the research community.


Assuntos
Metronidazol/farmacologia , Nitrorredutases/metabolismo , Pró-Fármacos/química , Animais , Animais Geneticamente Modificados , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Metronidazol/farmacocinética , Nitrorredutases/química , Nitrorredutases/genética , Pró-Fármacos/farmacologia , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retina/citologia , Retina/efeitos dos fármacos , Vibrio/enzimologia , Peixe-Zebra/genética
2.
NPJ Breast Cancer ; 6: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025567

RESUMO

We lack tools to risk-stratify triple-negative breast cancer (TNBC). Our goal was to develop molecular tools to predict disease recurrence. Methylation array analysis was performed on 110 samples treated by locoregional therapy obtained from institutional cohorts. Discovered marker sets were then tested by Kaplan-Meier analyses in a prospectively collected TNBC cohort of 49 samples from the no-chemotherapy arms of IBCSG trials VIII and IX, and by logistic regression in a chemotherapy-treated cohort of 121 TNBCs from combined IBCSG trials and institutional repositories. High methylation was associated with shorter recurrence-free interval in the no-chemotherapy arm of the IBCSG studies, as well as in the chemotherapy-treated patients within the combined institutional and IBCSG chemotherapy cohorts (100 marker panel, p = 0.002; 30 marker panel, p = 0.05). Chromosome 19 sites were enriched among these loci. In conclusion, our hypermethylation signatures identify increased recurrence risk independent of whether patients receive chemotherapy.

3.
Clin Cancer Res ; 25(21): 6357-6367, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31300453

RESUMO

PURPOSE: An unmet need in low-resource countries is an automated breast cancer detection assay to prioritize women who should undergo core breast biopsy and pathologic review. Therefore, we sought to identify and validate a panel of methylated DNA markers to discriminate between cancer and benign breast lesions using cells obtained by fine-needle aspiration (FNA).Experimental Design: Two case-control studies were conducted comparing cancer and benign breast tissue identified from clinical repositories in the United States, China, and South Africa for marker selection/training (N = 226) and testing (N = 246). Twenty-five methylated markers were assayed by Quantitative Multiplex-Methylation-Specific PCR (QM-MSP) to select and test a cancer-specific panel. Next, a pilot study was conducted on archival FNAs (49 benign, 24 invasive) from women with mammographically suspicious lesions using a newly developed, 5-hour, quantitative, automated cartridge system. We calculated sensitivity, specificity, and area under the receiver-operating characteristic curve (AUC) compared with histopathology for the marker panel. RESULTS: In the discovery cohort, 10 of 25 markers were selected that were highly methylated in breast cancer compared with benign tissues by QM-MSP. In the independent test cohort, this panel yielded an AUC of 0.937 (95% CI = 0.900-0.970). In the FNA pilot, we achieved an AUC of 0.960 (95% CI = 0.883-1.0) using the automated cartridge system. CONCLUSIONS: We developed and piloted a fast and accurate methylation marker-based automated cartridge system to detect breast cancer in FNA samples. This quick ancillary test has the potential to prioritize cancer over benign tissues for expedited pathologic evaluation in poorly resourced countries.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Metilação de DNA/genética , Neoplasias/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/isolamento & purificação , Biópsia por Agulha Fina , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Detecção Precoce de Câncer , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Projetos Piloto , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA