Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
AoB Plants ; 16(3): plae032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883565

RESUMO

Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).

2.
Aquat Toxicol ; 252: 106300, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162202

RESUMO

Cadmium (Cd) is considered a priority hazardous substance under the European Community Directive 2013/39 due to its ecotoxicity. The ragworm Hediste diversicolor (O.F. Müller, 1776), a common species in estuaries and coastal lagoons, plays an important ecological role in these ecosystems and is a suitable bioindicator of environmental chemical contamination. In this study, H. diversicolor was chosen as an ecotoxicological model with the aim of evaluating the responses to Cd contamination, considering a multi-biomarker approach (mortality, biometry, behaviour, Cd bioaccumulation, oxidative stress and damage, and energy metabolism). Also, the hypothesis of different tolerances resulting in different responses was evaluated, by collecting worms from three systems distinctly impacted by metal contamination (Mondego estuary, Óbidos Lagoon and Sado estuary - Portugal). Animals were exposed under laboratory conditions to cadmium (10, 50 and 100 µg/L), for 10 days. Significant differences were observed in responses amongst worms originating from the different sites. Organisms from the less impacted systems revealed greater effects on mortality, biomass decrease and burrowing behaviour, as well as higher bioaccumulation potential, after exposure to Cd. Biochemical and behaviour impairments were observed as a consequence of Cd exposure, although not in a concentration-dependant manner. The results obtained in this study reinforce the importance of integrating endpoint responses, at the individual and sub-individual levels, to assess potential changes induced by pollutants in the physiological status and fitness of H. diversicolor and help to predict what their ecological consequences might be.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Ecossistema , Biomarcadores Ambientais , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Substâncias Perigosas/metabolismo , Substâncias Perigosas/farmacologia
3.
Sci Total Environ ; 830: 154735, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337882

RESUMO

Anthropogenic noise is a growing threat to marine organisms, including fish. Yet very few studies have addressed the impact of anthropogenic noise on fish reproduction, especially in situ. In this study, we investigated the impacts of boat noise exposure in the reproductive success of wild Lusitanian toadfish (Halobatrachus didactylus), a species that relies on advertisement calls for mate attraction, using behavioural, physiological and reproductive endpoints. Two sets of artificial nests were deployed in the Tagus estuary and exposed to either ambient sound or boat noise during their breeding season. Toadfish males spontaneously used these nests to breed. We inspected nests for occupation and the presence of eggs in six spring low tides (in two years) and assessed male vocal activity and stress responses. Boat noise did not affect nest occupation by males but impacted reproductive success by decreasing the likelihood of receiving eggs, decreasing the number of live eggs and increasing the number of dead eggs, compared to control males. Treatment males also showed depressed vocal activity and slightly higher cortisol levels. The assessment of oxidative stress and energy metabolism-related biomarkers revealed no oxidative damage in noise exposed males despite having lower antioxidant responses and pointed towards a decrease in the activity levels of energy metabolism-related biomarkers. These results suggest that males exposed to boat noise depressed their metabolism and their activity (such as parental care and mate attraction) to cope with an acoustic stressor, consistent with a freezing defensive response/behaviour. Together, our study demonstrates that boat noise has severe impacts on reproductive fitness in Lusitanian toadfish. We argue that, at least fishes that cannot easily avoid noise sources due to their dependence on specific spawning sites, may incur in significant direct fitness costs due to chronic noise exposure.


Assuntos
Batracoidiformes , Navios , Acústica , Animais , Masculino , Ruído/efeitos adversos , Reprodução
4.
Biology (Basel) ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943149

RESUMO

Sulfoxaflor is an insecticide belonging to the recent sulfoximine class, acting as a nicotinic acetylcholine receptor (nAChRs) agonist. There are few studies regarding sulfoxaflor's toxicity to non-target organisms. The present study aimed to investigate the acute and sub-lethal effects of sulfoxaflor on Carcinus maenas by addressing survival, behaviour (feed intake and motricity), and neuromuscular, detoxification and oxidative stress, and energy metabolism biomarkers. Adult male green crabs were exposed to sulfoxaflor for 96 h and an LC50 of 2.88 mg L-1 was estimated. All biomarker endpoints were sampled after three (T3) and seven (T7) days of exposure and behavioural endpoints were addressed at T3 and day six (T6). Sulfoxaflor affected the feed intake and motricity of C. maenas at T6. From the integrated analysis of endpoints, with the increase in concentrations of sulfoxaflor, after seven days, one can notice a lower detoxification capacity (lower GST), higher LPO levels and effects on behaviour (higher motricity effects and lower feed intake). This integrated approach proved to be valuable in understanding the negative impacts of sulfoxaflor on green crabs, while contributing to the knowledge of this pesticide toxicity to non-target coastal invertebrates.

5.
Chem Biol Interact ; 292: 94-100, 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30006001

RESUMO

Dyes have been used for more than twenty thousand years in textile, pharmaceutical, food, cosmetic, and photographic industries, among others. Despite their importance in these applications, dyes can be toxic and resistant to many degradation processes used in wastewater treatment plants. Although a large number of dyes have been released in the environments in high amounts, studies into the environmental toxicity of these substances are still scarce. The aim of this study was to evaluate the potential toxic effects of textile dyes Disperse Red 60, Disperse Red 73 and Disperse Red 78 in zebrafish early life stages. To this end, biochemical biomarkers were selected to evaluate non-enzimatic antioxidant (Total Glutathione), antioxidant enzymes (Glutathione S-transferase and Catalase), oxidative stress (lipid peroxidation), neurotransmission (acetylcholinesterase) and energetic metabolism parameters (energy available and energy consumed) after 96 h exposure to these dyes. Our results demonstrated that these disperse dyes induce biochemical alterations in zebrafish embryos at environmental realistic concentrations and that the discharge of these disperse dyes into water bodies should be carefully evaluated. The selected biomarkers were sensitive as early-warning endpoints of disperse dyes toxicity on zebrafish embryos. Implications for risk assessment and indications for future research are discussed.


Assuntos
Compostos Azo/toxicidade , Corantes/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetilcolina/metabolismo , Animais , Relação Dose-Resposta a Droga , Estrutura Molecular , Peixe-Zebra
6.
Chemosphere ; 210: 531-538, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30029145

RESUMO

In recent years, the need for the development of alternative test methods for the conventional acute fish toxicity test (AFT) with adult fish has often been discussed. In addition, concerns have been raised on the potential risks related with environmentally realistic pesticide mixtures since risk evaluations have traditionally been based on individual pesticides. The insecticide/acaricide abamectin and the fungicide difenoconazole are the main pesticides that are intensively used in Brazilian strawberry crop and are hence likely to occur simultaneously in edge-of-field waterbodies. The aim of the present study was therefore to evaluate the lethal and sublethal toxicity of single and mixture exposures of these pesticides to zebrafish early life stages (embryos and juveniles). By comparing the derived toxicity data of the individual compounds with that previously determined for zebrafish adults, the order of life stage sensitivity was juvenile > adult > embryo. The pesticide mixture revealed a dose-level dependent deviation of the independent action model, with antagonism at low dose levels and synergism at high dose levels. Sublethal parameters (especially those related with locomotion) were considerably more sensitive than lethality. Subsequently, the inclusion of sublethal parameters may greatly improve the sensitivity of FET tests and hence its suitability as a substitution of adult fish testing in risk assessment evaluations.


Assuntos
Dioxolanos/toxicidade , Ivermectina/análogos & derivados , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Brasil , Interações Medicamentosas , Fungicidas Industriais , Inseticidas/farmacologia , Ivermectina/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Praguicidas/farmacologia , Praguicidas/toxicidade , Testes de Toxicidade Aguda , Poluentes Químicos da Água/farmacologia , Peixe-Zebra/crescimento & desenvolvimento
7.
Sci Total Environ ; 613-614: 1093-1103, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28950671

RESUMO

Azo dyes are known as a group of substances with DNA damage potential that depend on the nature and number of azo groups connected to aromatic rings (benzene and naphthalene), chemical properties, e.g. solubility and reactive functional groups, which significantly affect their toxicological and ecological risks. In this paper, we used in vitro models to evaluate the metabolism of selected textile dyes: Disperse Red 73 (DR 73), Disperse Red 78 (DR 78) and Disperse Red 167 (DR 167). To evaluate the mutagenic potential of the textile dyes, the Salmonella mutagenicity assay (Ames test) with strains TA 98 and TA 100 in the presence and absence of the exogenous metabolic system (S9) was used. DR73 was considered the most mutagenic compound, inducing both replacement base pairs (TA 100) and also changing frameshift (TA 98) mutations that are reduced in the presence of the S9 mixture. Furthermore, we used rat liver microsomes in the same experimental conditions of the S9 mixture to metabolize the dyes and the resultant solutions were analyzed using a liquid chromatography coupled to a quadrupole linear ion trap mass spectrometry (LC-MS/MS) to investigate the metabolites formed by the in vitro biotransformation. Based on this experiment, we detected and identified two biotransformation products for each textile dye substrate analyzed. Furthermore, to evaluate the interaction and reactivity of these compounds with DNA, theoretical calculations were also carried out. The results showed that the chemical reaction occurred preferentially at the azo group and the nitro group, indicating that there was a reduction in these groups by the CYP P450 enzymes presented in the rat microsomal medium. Our results clearly demonstrated that the reduction of these dyes by biological systems is a great environmental concern due to increased genotoxicity for the body of living beings, especially for humans.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , DNA/química , Testes de Mutagenicidade , Animais , Biotransformação , Cromatografia Líquida , Microssomos Hepáticos/metabolismo , Modelos Teóricos , Mutagênicos , Ratos , Salmonella , Salmonella typhimurium , Espectrometria de Massas em Tandem
8.
Environ Sci Pollut Res Int ; 24(30): 24029-24037, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28879624

RESUMO

Brazil has been the largest world consumer of pesticides since 2008, followed by the USA. The herbicides trifluralin and tebuthiuron have been widely applied in agriculture. These herbicides are selective for some plant species, and their use brings various benefits. However, the genotoxic and mutagenic effects of tebuthiuron on non-target organisms are poorly known, and in addition, the effects of trifluralin must be better investigated. Therefore, this study employed genetic tests including the comet assay and micronucleus test to evaluate the genotoxic effects of trifluralin and tebuthiuron on HepG2 cells. In addition, we have used the Ames test to assess the mutagenic effects of the herbicides on the TA97a, TA98, TA100, and TA1535 strains of Salmonella typhimurium. On the basis of the comet assay and the micronucleus test, trifluralin did not cause genetic damage to HepG2 cells. In addition, trifluralin did not impact the tested S. typhimurium strains. Regarding tebuthiuron, literature has shown that this herbicide damaged DNA in Oreochromis niloticus. Nevertheless, we have found that tebuthiuron was not genotoxic to either HepG2 cells or the S. typhimurium strains. Therefore, neither trifluralin nor tebuthiuron exerted genotoxic or mutagenic potential at the tested conditions.


Assuntos
Ciclídeos/genética , Compostos de Metilureia/química , Mutagênicos/farmacologia , Praguicidas/química , Salmonella typhimurium/genética , Trifluralina/química , Animais , Brasil , Ensaio Cometa , Dano ao DNA , Testes Genéticos , Células Hep G2 , Herbicidas/farmacologia , Humanos , Testes para Micronúcleos , Mutagênese , Testes de Mutagenicidade , Praguicidas/farmacologia , Salmonella typhimurium/química
9.
Basic Clin Pharmacol Toxicol ; 119(4): 396-404, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27060352

RESUMO

Indiscriminate use of synthetic substances has led to environmental contamination and increasing human and animal exposure to harmful chemicals. Polybrominated flame retardants (PBDEs), which serve as non-covalent additives that enhance the safety of a variety of commercial and consumer goods, are an important class among potentially damaging synthetic substances. Its use is very common in developing countries, including Brazil. In theory, 209 different PBDE congeners exist, and many are currently being used during the manufacture of several products. Unfortunately, PBDEs are easily released from the original products, promptly reaching the environment. Knowledge about the toxicological power of these substances is still limited, which has prevented environmental and regulatory authorities from conducting adequate risk assessments. This research addresses the genotoxic and mutagenic potential of PBDEs. The effects of HepG2 cells and Salmonella typhimurium exposure to six main representatives of PBDEs, namely tetrabromodiphenyl ether (BDE-47), pentabromodiphenyl ether (BDE-99 and BDE-100), hexabromodiphenyl ether (BDE-153 and BDE-154) and decabromodiphenyl ether (BDE-209), were evaluated. The comet assay revealed that all the assessed BDEs exerted genotoxic effects but induced no micronuclei formation in HepG2 cells. These BDEs had no significant mutagenic effects on the Salmonella typhimurium strains TA98 and TA100. Taken together, the results of the genomic instability assays showed that PBDEs can represent a risk to the health of directly and indirectly exposed population, because the assessed BDEs induce genotoxic effects in the HepG2 cell line.


Assuntos
Poluentes Ambientais/toxicidade , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Mutagênicos/toxicidade , Ensaio Cometa , Poluentes Ambientais/química , Éteres Difenil Halogenados/química , Células Hep G2 , Humanos , Isomerismo , Testes para Micronúcleos , Peso Molecular , Testes de Mutagenicidade , Mutagênicos/química , Concentração Osmolar , Bifenil Polibromatos/química , Bifenil Polibromatos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Solubilidade , Temperatura de Transição
10.
J Toxicol Environ Health A ; 78(5): 287-300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25734625

RESUMO

Contamination of natural waters has been one of the major problems of modern society and the textile industry is rated as an important polluting source, due to the generation of large amounts of wastewaters. The aim of this study was to assess textile dyes Reactive Blue 19 (RB19, anthraquinone dye) and Reactive Red 120 (RR120, azo dye) in terms of the potential to induce adverse effects on aquatic organisms and humans. Thus, these dyes were tested using the following assays: Microtox assay (Vibrio fischeri); brine shrimp (Artemia salina); Daphnia similis; and Comet with normal human dermal fibroblasts as well as Ames test (TA98, TA100, YG1041, YG1042--with and without S9). RB19 was relatively nontoxic to all aquatic bioindicators analyzed with an EC50 of more than 100 mg/L, whereas RR120 was only moderately toxic to A. salina with a EC50-48h of 81.89 mg/L. Mutagenicity through base pair substitution was observed with RB19 in the presence of S9 (Ames-positive). The comet assay did not demonstrate any apparent genotoxic effects for any tested dye. Although mutagenicity was detected with RB19, the mutagenic effect observed may be considered weak compared to the ability to induce DNA damage by other classes of dyes such as disperse dyes. Therefore, these dyes may be classified as nonmutagens (RR120) or weak mutagens (RB19) and relatively nontoxic for aquatic organisms. However, it is noteworthy that the weak acute toxicity to A. salina induced by RR120 is sufficient to suggest potential damage to the aquatic ecosystem and emphasizes the need for biomonitoring dye levels in wastewater systems.


Assuntos
Antraquinonas/toxicidade , Corantes/toxicidade , Triazinas/toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Animais , Artemia/efeitos dos fármacos , Ensaio Cometa , Daphnia/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Indústria Têxtil
11.
Toxicol In Vitro ; 28(1): 31-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23811265

RESUMO

Human eyes have a remarkable ability to recognize hundreds of colour shades, which has stimulated the use of colorants, especially for clothing, but toxicological studies have shown that some textile dyes can be hazardous to human health. Under conditions of intense perspiration, dyes can migrate from coloured clothes and penetrate into human skin. Garments made from cotton fabrics are the most common clothing in tropical countries, due to their high temperatures. Aiming to identify safe textile dyes for dyeing cotton fabrics, the genotoxicity [in vitro Comet assay with normal human dermal fibroblasts (NHDF), Tail Intensity] and mutagenicity [Salmonella/microsome preincubation assay (30min), tester strains TA98, TA100, YG1041 and YG1042] of Reactive Blue 2 (RB2, CAS No. 12236-82-7, C.I. 61211) and Reactive Green 19 (RG19, CAS No. 61931-49-5, C.I. 205075) were evaluated both in the formulated form and as extracted from cotton fibres using different artificial sweats. Both the dyes could migrate from cotton fibres to sweat solutions, the sweat composition and pH being important factors during this extraction. However, the dye sweat solutions showed no genotoxic/mutagenic effects, whereas a weak mutagenic potential was detected by the Ames test for both dyes in their formulated form. These findings emphasize the relevance of textile dyes assessment under conditions that more closely resemble human exposure, in order to recognize any hazard.


Assuntos
Corantes/toxicidade , Fibra de Algodão , Suor/química , Corantes/química , Ensaio Cometa , Humanos , Concentração de Íons de Hidrogênio , Testes de Mutagenicidade , Salmonella typhimurium/genética , Indústria Têxtil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA