Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomed Signal Process Control ; 85: 104905, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36993838

RESUMO

Purpose: A semi-supervised two-step methodology is proposed to obtain a volumetric estimation of COVID-19-related lesions on Computed Tomography (CT) images. Methods: First, damaged tissue was segmented from CT images using a probabilistic active contours approach. Second, lung parenchyma was extracted using a previously trained U-Net. Finally, volumetric estimation of COVID-19 lesions was calculated considering the lung parenchyma masks.Our approach was validated using a publicly available dataset containing 20 CT COVID-19 images previously labeled and manually segmented. Then, it was applied to 295 COVID-19 patients CT scans admitted to an intensive care unit. We compared the lesion estimation between deceased and survived patients for high and low-resolution images. Results: A comparable median Dice similarity coefficient of 0.66 for the 20 validation images was achieved. For the 295 images dataset, results show a significant difference in lesion percentages between deceased and survived patients, with a p-value of 9.1 × 10-4 in low-resolution and 5.1 × 10-5 in high-resolution images. Furthermore, the difference in lesion percentages between high and low-resolution images was 10 % on average. Conclusion: The proposed approach could help estimate the lesion size caused by COVID-19 in CT images and may be considered an alternative to getting a volumetric segmentation for this novel disease without the requirement of large amounts of COVID-19 labeled data to train an artificial intelligence algorithm. The low variation between the estimated percentage of lesions in high and low-resolution CT images suggests that the proposed approach is robust, and it may provide valuable information to differentiate between survived and deceased patients.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1957-1960, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891670

RESUMO

Blind linear unmixing (BLU) methods allow the separation of multi and hyperspectral data into end-members and abundance maps in an unsupervised fashion. However, due to incident noise, the abundance maps can exhibit high presence of granularity. To address this problem, in this paper, we present a novel proposal for BLU that considers spatial coherence in the abundance estimations, through a total spatial variation component. The proposed BLU formulation is based on the blind end-member and abundance extraction perspective with total spatial variation (EBEAE-STV). In EBEAE-STV, internal abundances are added to incorporate the spatial coherence in the cost function, which is solved by a coordinates descent algorithm. The results with synthetic data show that the proposed algorithm can significantly decrease the granularity in the estimated abundances, and the estimation errors and computational times are lower compared to state of the art methodologies.Clinical relevance- The proper and robust estimation of end-members and their respective contributions (abundances) in multi-spectral and hyper-spectral images from the proposed EBEAE-STV methodology might provide useful information in several biomedical applications, such as chemometric analysis on different biological samples, tumor identification and brain tissue classification for hyper-spectral imaging, among others.


Assuntos
Quimiometria , Imageamento Hiperespectral , Algoritmos , Diagnóstico por Imagem
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3850-3853, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892074

RESUMO

A two-step method for obtaining a volumetric estimation of COVID-19 related lesion from CT images is proposed. The first step consists in applying a U-NET convolutional neural network to provide a segmentation of the lung-parenchyma. This architecture is trained and validated using the Thoracic Volume and Pleural Effusion Segmentations in Diseased Lungs for Benchmarking Chest CT Processing Pipelines (PleThora) dataset, which is publicly available. The second step consists in obtaining the volumetric lesion estimation using an automatic algorithm based on a probabilistic active contour (PACO) region delimitation approach. Our pipeline successfully segmented COVID-19 related lesions in CT images, with exception of some mislabeled regions including lung airways and vasculature. Our workflow was applied to images in a cohort of 50 patients.


Assuntos
COVID-19 , Humanos , Pulmão/diagnóstico por imagem , Redes Neurais de Computação , SARS-CoV-2 , Tomografia Computadorizada por Raios X
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7320-7323, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892788

RESUMO

Parkinsonian Tremor (PT) is the most common symptom of Parkinson's disease. Its early detection plays an important role in the diagnosis of the disease as it is often mistaken for another type of tremor, called Essential Tremor (ET). Accelerometry analysis has proven to be a trustworthy method for determining the frequency, amplitude, and occurrence of tremor. In addition, the use of portable and wearable sensors has increased due to the rapid growth of Internet of Things (IoT) technology, allowing data to be collected, processed, stored, and transmitted. In this paper, a wearable system consisting of a digital 3-axis accelerometer ADXL345 and micro-controller unit ESP32 was implemented to transmit accelerometry (ACC) signals from each upper limb simultaneously to a Graphical User Interface (GUI), that was developed in Python as an MQTT client, allowing the user to visualize both real-time and offline signals as well as to add markers to indicate events during the acquisition. Furthermore, this GUI is capable of performing an offline analysis consisting of the computing of Power Spectral Density (PSD) using Welch's method and a Spectrogram to visualize a time-frequency distribution of the ACC signals.


Assuntos
Tremor Essencial , Doença de Parkinson , Acelerometria , Humanos , Doença de Parkinson/diagnóstico , Tremor/diagnóstico , Extremidade Superior
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7625-7628, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892855

RESUMO

The Biomedical Engineering (BME) bachelor pro-gram of the Faculty of Sciences in Universidad Autónoma de San Luis Potosí (UASLP) was created in June of 2010, with the aim of training professionals with an integral perspective in the engineering field by considering a multidisciplinary approach to develop and apply technology in the areas of medicine and biology. After 10 years, our BME program has achieved national recognition. Despite of being an emerging program, this achievement has been obtained by the consolidation of our academic staff, the outstanding participation of our students in national and international academic events, and the historical graduation results. In our comprehensive evaluation, we report an overall terminal efficiency (completion rate) of 67% and a graduation rate of 47.2%, where these values are above the average for an engineering program in our institution. Additionally, the BME program provides students with solid skills and background to carry out research activities, which has resulted in a considerable number of alumni pursuing graduate studies or have already completed one. Our results show that 90% of our former students are working after graduation, but only 44% work in the field of biomedical engineering, since the regional labor market starts to saturate given the fact that, at present, students from six generations have completed our BME bachelor program. In this way, few graduates visualize the wide spectrum of job options where a biomedical engineer can impact, by their distinctive comprehensive and multidisciplinary training. Therefore, it is necessary to propose new curricular design strategies to provide our students with an academic training that allows them to enter a globalized world, where there is an even greater spectrum of engineering possibilities related to the fields of medicine and biology, in line with current trends.


Assuntos
Engenharia Biomédica , Universidades , Bioengenharia , Engenharia Biomédica/educação , Humanos , Estudantes
6.
PLoS One ; 16(3): e0248301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33735228

RESUMO

The deconvolution process is a key step for quantitative evaluation of fluorescence lifetime imaging microscopy (FLIM) samples. By this process, the fluorescence impulse responses (FluoIRs) of the sample are decoupled from the instrument response (InstR). In blind deconvolution estimation (BDE), the FluoIRs and InstR are jointly extracted from a dataset with minimal a priori information. In this work, two BDE algorithms are introduced based on linear combinations of multi-exponential functions to model each FluoIR in the sample. For both schemes, the InstR is assumed with a free-form and a sparse structure. The local perspective of the BDE methodology assumes that the characteristic parameters of the exponential functions (time constants and scaling coefficients) are estimated based on a single spatial point of the dataset. On the other hand, the same exponential functions are used in the whole dataset in the global perspective, and just the scaling coefficients are updated for each spatial point. A least squares formulation is considered for both BDE algorithms. To overcome the nonlinear interaction in the decision variables, an alternating least squares (ALS) methodology iteratively solves both estimation problems based on non-negative and constrained optimizations. The validation stage considered first synthetic datasets at different noise types and levels, and a comparison with the standard deconvolution techniques with a multi-exponential model for FLIM measurements, as well as, with two BDE methodologies in the state of the art: Laguerre basis, and exponentials library. For the experimental evaluation, fluorescent dyes and oral tissue samples were considered. Our results show that local and global perspectives are consistent with the standard deconvolution techniques, and they reached the fastest convergence responses among the BDE algorithms with the best compromise in FluoIRs and InstR estimation errors.


Assuntos
Corantes Fluorescentes/química , Processamento de Imagem Assistida por Computador/métodos , Modelos Químicos , Algoritmos , Conjuntos de Dados como Assunto , Humanos , Análise dos Mínimos Quadrados , Microscopia de Fluorescência , Mucosa Bucal/patologia , Neoplasias Bucais/patologia , Fatores de Tempo
7.
Med Biol Eng Comput ; 57(3): 565-576, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30267254

RESUMO

In medical imaging, the availability of robust and accurate automatic segmentation methods is very important for a user-independent and time-saving delineation of regions of interest. In this work, we present a new variational formulation for multiclass image segmentation based on active contours and probability density functions demonstrating that the method is fast, accurate, and effective for MRI brain image segmentation. We define an energy function assuming that the regions to segment are independent. The first term of this function measures how much the pixels belong to each class and forces the regions to be disjoint. In order for this term to be outlier-resistant, probability density functions were used allowing to define the structures to be segmented. The second one is the classical regularization term which constrains the border length of each region removing inhomogeneities and noise. Experiments with synthetic and real images showed that this approach is robust to noise and presents an accuracy comparable to other classical segmentation approaches (in average DICE coefficient over 90% and ASD below one pixel), with further advantages related to segmentation speed. Graphical Abstract.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Líquido Cefalorraquidiano/diagnóstico por imagem , Humanos , Probabilidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-26737469

RESUMO

In this paper, we present a methodology for multimodal/ multispectral image registration of medical images. This approach is formulated by using the Expectation-Maximization (EM) methodology, such that we estimate the parameters of a geometric transformation that aligns multimodal/multispectral images. In this framework, the hidden random variables are associated to the intensity relations between the studied images, which allow to compare multispectral intensity values between images of different modalities. The methodology is basically composed by an iterative two-step procedure, where at each step, a new estimation of the joint conditional multispectral intensity distribution and the geometric transformation is computed. The proposed algorithm was tested with different kinds of medical images, and the obtained results show that the proposed methodology can be used to efficiently align multimodal/multispectral medical images.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imagem Multimodal/métodos , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-23367431

RESUMO

In this paper a method based on mesh surfaces approximations for the 3D analysis of anatomical structures in Radiotherapy (RT) is presented. Parotid glands meshes constructed from Megavoltage CT (MVCT) images were studied in terms of volume, distance between center of mass (distCOM) of the right and left parotids, dice similarity coefficient (DICE), maximum distance between meshes (DMax) and the average symmetric distance (ASD). A comparison with the standard binary images approach was performed. While absence of significant differences in terms of volume, DistCOM and DICE indices suggests that both approaches are comparable, the fact that the ASD showed significant difference (p=0.002) and the DMax was almost significant (p=0.053) suggests that the mesh approach should be adopted to provide accurate comparison between 3D anatomical structures of interest in RT.


Assuntos
Imageamento Tridimensional/métodos , Glândula Parótida/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia/métodos , Algoritmos , Simulação por Computador , Processamento Eletrônico de Dados , Humanos , Processamento de Imagem Assistida por Computador , Modelos Anatômicos , Modelos Estatísticos , Variações Dependentes do Observador , Glândula Parótida/patologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA