Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 192: 107988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072140

RESUMO

Phylogenetic inference has become a standard technique in integrative taxonomy and systematics, as well as in biogeography and ecology. DNA barcodes are often used for phylogenetic inference, despite being strongly limited due to their low number of informative sites. Also, because current DNA barcodes are based on a fraction of a single, fast-evolving gene, they are highly unsuitable for resolving deeper phylogenetic relationships due to saturation. In recent years, methods that analyse hundreds and thousands of loci at once have improved the resolution of the Tree of Life, but these methods require resources, experience and molecular laboratories that most taxonomists do not have. This paper introduces a PCR-based protocol that produces long amplicons of both slow- and fast-evolving unlinked mitochondrial and nuclear gene regions, which can be sequenced by the affordable and portable ONT MinION platform with low infrastructure or funding requirements. As a proof of concept, we inferred a phylogeny of a sample of 63 spider species from 20 families using our proposed protocol. The results were overall consistent with the results from approaches based on hundreds and thousands of loci, while requiring just a fraction of the cost and labour of such approaches, making our protocol accessible to taxonomists worldwide.


Assuntos
Código de Barras de DNA Taxonômico , DNA , Humanos , Filogenia , Análise Custo-Benefício , DNA/química , Análise de Sequência de DNA/métodos , Código de Barras de DNA Taxonômico/métodos
2.
Elife ; 112022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354219

RESUMO

A major limitation of current reports on insect declines is the lack of standardized, long-term, and taxonomically broad time series. Here, we demonstrate the utility of environmental DNA from archived leaf material to characterize plant-associated arthropod communities. We base our work on several multi-decadal leaf time series from tree canopies in four land use types, which were sampled as part of a long-term environmental monitoring program across Germany. Using these highly standardized and well-preserved samples, we analyze temporal changes in communities of several thousand arthropod species belonging to 23 orders using metabarcoding and quantitative PCR. Our data do not support widespread declines of α-diversity or genetic variation within sites. Instead, we find a gradual community turnover, which results in temporal and spatial biotic homogenization, across all land use types and all arthropod orders. Our results suggest that insect decline is more complex than mere α-diversity loss, but can be driven by ß-diversity decay across space and time.


Insects are a barometer of environmental health. Ecosystems around the world are being subjected to unprecedented man-made stresses, ranging from climate change to pollution and intensive land use. These stresses have been associated with several recent, dramatic declines in insect populations, particularly in areas with heavily industrialised farming practices. Despite this, the links between insect decline, environmental stress, and ecosystem health are still poorly-understood. A decline in one area might look catastrophic, but could simply be part of normal, longer-term variations. Often, we do not know whether insect decline is a local phenomenon or reflects wider environmental trends. Additionally, most studies do not go far back enough in time or cover a wide enough geographical range to make these distinctions. To understand and combat insect decline, we therefore need reliable methods to monitor insect populations over long periods of time. To solve this problem, Krehenwinkel, Weber et al. gathered data on insect communities from a new source: tree leaves. Originally, these samples were collected to study air pollution, but they also happen to contain the DNA of insects that interacted with them before they were collected ­ for example, DNA deposited in chew marks where the insects had nibbled on the leaves. This is called environmental DNA, or eDNA for short. To survey the insect communities that lived in these trees, Krehenwinkel, Weber et al. first extracted eDNA from the leaves and sequenced it. Analysis of the different DNA sequences from the leaf samples revealed not only the number of insect species, but also the abundance (or rarity) of each species within each community. Importantly, the leaves had been collected and stored in stable conditions over several decades, allowing changes in these insect populations to be tracked over time. eDNA analysis revealed subtle changes in the make-up of forest insect communities. In the forests where the leaves were collected, the total number of insect species remained much the same over time. However, many individual species still declined, only to be replaced by newcomer species. These 'colonisers' are also widespread, which will likely lead to an overall pattern of fewer species that are more widely distributed ­ in other words, more homogeneity. The approach of Krehenwinkel, Weber et al. provides a reliable method to study insect populations in detail, over multiple decades, using archived samples from environmental studies. The information gained from this has real-world significance for environmental issues with enormous social impact, ranging from conservation, to agriculture and even public health.


Assuntos
Artrópodes , DNA Ambiental , Animais , Biodiversidade , Florestas , Insetos , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA