Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Phys Chem Lett ; 15(7): 1943-1949, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38346112

RESUMO

In this work, we investigate how fluid flows impact the aggregation mechanisms of Aß40 proteins and Aß16-22 peptides and mechanically perturb their (pre)fibrillar aggregates. We exploit the OPEP coarse-grained model for proteins and the Lattice Boltzmann Molecular Dynamics technique. We show that beyond a critical shear rate, amyloid aggregation speeds up in Couette flow because of the shorter collisions times between aggregates, following a transition from diffusion limited to advection dominated dynamics. We also characterize the mechanical deformation of (pre)fibrillar states due to the fluid flows (Couette and Poiseuille), confirming the capability of (pre)fibrils to form pathological loop-like structures as detected in experiments. Our findings can be of relevance for microfluidic applications and for understanding aggregation in the interstitial brain space.


Assuntos
Amiloide , Simulação de Dinâmica Molecular , Amiloide/química , Difusão , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química
2.
J Chem Phys ; 159(13)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37787143

RESUMO

Polyelectrolytes can electrophoretically be driven through nanopores in order to be detected. The respective translocation events are often very fast and the process needs to be controlled to promote efficient detection. To this end, we attempt to control the translocation dynamics by coating the inner surface of a nanopore. For this, different charge distributions are chosen that result in substantial variations of the pore-polymer interactions. In addition and in view of the existing detection modalities, experimental settings, and nanopore materials, different types of sensors inside the nanopore have been considered to probe the translocation process and its temporal spread. The respective transport of polyelectrolytes through the coated nanopores is modeled through a multi-physics computational scheme that incorporates a mesoscopic/electrokinetic description for the solvent and particle-based scheme for the polymer. This investigation could underline the interplay between sensing modality, nanopore material, and detection accuracy. The electro-osmotic flow and electrophoretic motion in a pore are analyzed together with the polymeric temporal and spatial fluctuations unraveling their correlations and pathways to optimize the translocation speed and dynamics. Accordingly, this work sketches pathways in order to tune the pore-polymer interactions in order to control the translocation dynamics and, in the long run, errors in their measurements.

3.
J Phys Chem B ; 127(16): 3616-3623, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37071827

RESUMO

Macromolecular crowding has profound effects on the mobility of proteins, with strong implications on the rates of intracellular processes. To describe the dynamics of crowded environments, detailed molecular models are needed, capturing the structures and interactions arising in the crowded system. In this work, we present OPEPv7, which is a coarse-grained force field at amino-acid resolution, suited for rigid-body simulations of the structure and dynamics of crowded solutions formed by globular proteins. Using the OPEP protein model as a starting point, we have refined the intermolecular interactions to match the experimentally observed dynamical slowdown caused by crowding. The resulting force field successfully reproduces the diffusion slowdown in homogeneous and heterogeneous protein solutions at different crowding conditions. Coupled with the lattice Boltzmann technique, it allows the study of dynamical phenomena in protein assemblies and opens the way for the in silico rheology of protein solutions.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/química , Simulação por Computador , Soluções
4.
J Chem Phys ; 158(9): 095103, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889954

RESUMO

Mucociliary clearance is the first defense mechanism of the respiratory tract against inhaled particles. This mechanism is based on the collective beating motion of cilia at the surface of epithelial cells. Impaired clearance, either caused by malfunctioning or absent cilia, or mucus defects, is a symptom of many respiratory diseases. Here, by exploiting the lattice Boltzmann particle dynamics technique, we develop a model to simulate the dynamics of multiciliated cells in a two-layer fluid. First, we tuned our model to reproduce the characteristic length- and time-scales of the cilia beating. We then check for the emergence of the metachronal wave as a consequence of hydrodynamic mediated correlations between beating cilia. Finally, we tune the viscosity of the top fluid layer to simulate the mucus flow upon cilia beating, and evaluate the pushing efficiency of a carpet of cilia. With this work, we build a realistic framework that can be used to explore several important physiological aspects of mucociliary clearance.


Assuntos
Cílios , Depuração Mucociliar , Cílios/fisiologia , Depuração Mucociliar/fisiologia , Cinética , Células Epiteliais , Muco/fisiologia
5.
ACS Cent Sci ; 9(1): 93-102, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36712493

RESUMO

Temperature variations have a big impact on bacterial metabolism and death, yet an exhaustive molecular picture of these processes is still missing. For instance, whether thermal death is determined by the deterioration of the whole or a specific part of the proteome is hotly debated. Here, by monitoring the proteome dynamics of E. coli, we clearly show that only a minor fraction of the proteome unfolds at the cell death. First, we prove that the dynamical state of the E. coli proteome is an excellent proxy for temperature-dependent bacterial metabolism and death. The proteome diffusive dynamics peaks at about the bacterial optimal growth temperature, then a dramatic dynamical slowdown is observed that starts just below the cell's death temperature. Next, we show that this slowdown is caused by the unfolding of just a small fraction of proteins that establish an entangling interprotein network, dominated by hydrophobic interactions, across the cytoplasm. Finally, the deduced progress of the proteome unfolding and its diffusive dynamics are both key to correctly reproduce the E. coli growth rate.

6.
Polymers (Basel) ; 13(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833213

RESUMO

Von Willebrand Factor (vWf) is a giant multimeric extracellular blood plasma involved in hemostasis. In this work we present multi-scale simulations of its three-domains fragment A1A2A3. These three domains are essential for the functional regulation of vWf. Namely the A2 domain hosts the site where the protease ADAMTS13 cleavages the multimeric vWf allowing for its length control that prevents thrombotic conditions. The exposure of the cleavage site follows the elongation/unfolding of the domain that is caused by an increased shear stress in blood. By deploying Lattice Boltzmann molecular dynamics simulations based on the OPEP coarse-grained model for proteins, we investigated at molecular level the unfolding of the A2 domain under the action of a perturbing shear flow. We described the structural steps of this unfolding that mainly concerns the ß-strand structures of the domain, and we compared the process occurring under shear with that produced by the action of a directional pulling force, a typical condition of single molecule experiments. We observe, that under the action of shear flow, the competition among the elongational and rotational components of the fluid field leads to a complex behaviour of the domain, where elongated structures can be followed by partially collapsed melted globule structures with a very different degree of exposure of the cleavage site. Our simulations pose the base for the development of a multi-scale in-silico description of vWf dynamics and functionality in physiological conditions, including high resolution details for molecular relevant events, e.g., the binding to platelets and collagen during coagulation or thrombosis.

7.
Plast Reconstr Surg ; 148(4): 592e-600e, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550944

RESUMO

BACKGROUND: Nasal obstruction is a common problem, with significant impact on quality of life. Accurate diagnosis may be challenging because of the complex and dynamic nature of the involved anatomy. Computational fluid dynamics modeling has the ability to identify specific anatomical defects, allowing for a targeted surgical approach. The goal of the current study is to better understand nasal obstruction as it pertains to disease-specific quality of life by way of a novel computational fluid dynamics model of nasal airflow. METHODS: Fifty-three patients with nasal obstruction underwent computational fluid dynamics modeling based on computed tomographic imaging. Nasal resistance was compared to demographic data and baseline subjective nasal patency based on Nasal Obstructive Symptom Evaluation scores. RESULTS: Mean Nasal Obstructive Symptom Evaluation score among all patients was 72.6. Nasal Obstructive Symptom Evaluation score demonstrated a significant association with nasal resistance in patients with static obstruction (p = 0.03). There was a positive correlation between Nasal Obstructive Symptom Evaluation score and nasal resistance in patients with static bilateral nasal obstruction (R2 = 0.32) and poor correlation in patients with dynamic bilateral obstruction caused by nasal valve collapse (R2 = 0.02). Patients with moderate and severe bilateral symptoms had significantly higher nasal resistance compared to those with unilateral symptoms (p = 0.048). CONCLUSIONS: Nasal obstruction is a multifactorial condition in most patients. This study shows correlation between simulated nasal resistance and Nasal Obstructive Symptom Evaluation score in a select group of patients. There is currently no standardized diagnostic algorithm or gold standard objective measure of nasal airflow; however, computational fluid dynamics may better inform treatment planning and surgical techniques on an individual basis. CLINICAL QUESTION/LEVEL OF EVIDENCE: Risk, V.


Assuntos
Hidrodinâmica , Modelos Biológicos , Obstrução Nasal/diagnóstico , Planejamento de Assistência ao Paciente , Adulto , Estudos de Coortes , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obstrução Nasal/complicações , Obstrução Nasal/fisiopatologia , Obstrução Nasal/cirurgia , Procedimentos Cirúrgicos Nasais , Nariz/diagnóstico por imagem , Nariz/fisiopatologia , Nariz/cirurgia , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
8.
Chem Rev ; 121(4): 2545-2647, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33543942

RESUMO

Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aß, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.


Assuntos
Amiloide/química , Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Doenças Neurodegenerativas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas , Deficiências na Proteostase/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
9.
Sci Rep ; 9(1): 16450, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712588

RESUMO

In this work we present the coupling between Dry Martini, an efficient implicit solvent coarse-grained model for lipids, and the Lattice Boltzmann Molecular Dynamics (LBMD) simulation technique in order to include naturally hydrodynamic interactions in implicit solvent simulations of lipid systems. After validating the implementation of the model, we explored several systems where the action of a perturbing fluid plays an important role. Namely, we investigated the role of an external shear flow on the dynamics of a vesicle, the dynamics of substrate release under shear, and inquired the dynamics of proteins and substrates confined inside the core of a vesicle. Our methodology enables future exploration of a large variety of biological entities and processes involving lipid systems at the mesoscopic scale where hydrodynamics plays an essential role, e.g. by modulating the migration of proteins in the proximity of membranes, the dynamics of vesicle-based drug delivery systems, or, more generally, the behaviour of proteins in cellular compartments.

10.
J Phys Chem Lett ; 10(7): 1594-1599, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30892042

RESUMO

In this work we investigate the multiscale dynamics of the aggregation process of an amyloid peptide, Aß16-22. By performing massive coarse-grained simulations at the quasi-atomistic resolution and including hydrodynamic effects, we followed the formation and growth of a large elongated aggregate and its slow structuring. The elongation proceeds via a two-step nucleation mechanism with disordered aggregates formed initially and subsequently fusing to elongate the amorphous prefibril. A variety of coagulation events coexist, including lateral growth. The latter mechanism, sustained by long-range hydrodynamics correlations, actually can create a large branched structure spanning a few tens of nanometers. Our findings confirm the experimental hypothesis of a critical contribution of lateral growth to the amyloid aggregation kinetics and the capability of our model to sample critical structures like prefibril hosting annular pores.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Peptídeos beta-Amiloides/química , Hidrodinâmica , Cinética , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Estrutura Terciária de Proteína
11.
J Phys Chem B ; 122(50): 11922-11930, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30444631

RESUMO

The perturbation of a protein conformation by a physiological fluid flow is crucial in various biological processes including blood clotting and bacterial adhesion to human tissues. Investigating such mechanisms by computer simulations is thus of great interest, but it requires development of ad hoc strategies to mimic the complex hydrodynamic interactions acting on the protein from the surrounding flow. In this study, we apply the Lattice Boltzmann Molecular Dynamics (LBMD) technique built on the implicit solvent coarse-grained model for protein Optimized Potential for Efficient peptide structure Prediction (OPEP) and a mesoscopic representation of the fluid solvent, to simulate the unfolding of a small globular cold-shock protein in shear flow and to compare it to the unfolding mechanisms caused either by mechanical or thermal perturbations. We show that each perturbation probes a specific weakness of the protein and causes the disruption of the native fold along different unfolding pathways. Notably, the shear flow and the thermal unfolding exhibit very similar pathways, while because of the directionality of the perturbation, the unfolding under force is quite different. For force and thermal disruption of the native state, the coarse-grained simulations are compared to all-atom simulations in explicit solvent, showing an excellent agreement in the explored unfolding mechanisms. These findings encourage the use of LBMD based on the OPEP model to investigate how a flow can affect the function of larger proteins, for example, in catch-bond systems.


Assuntos
Proteínas de Bactérias/química , Hidrodinâmica , Simulação de Dinâmica Molecular , Escherichia coli/química , Humanos , Fenômenos Mecânicos , Conformação Proteica , Desdobramento de Proteína
12.
J Phys Chem B ; 122(32): 7915-7928, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30044622

RESUMO

A coarse-grained model for simulating structural properties of double-stranded RNA is developed with parameters obtained from quantum-mechanical calculations. This model follows previous parametrization for double-stranded DNA, which is based on mapping the all-atom picture to a coarse-grained four-bead scheme. Chemical and structural differences between RNA and DNA have been taken into account for the model development. The parametrization is based on simulations using density functional theory (DFT) on separate units of the RNA molecule without implementing experimental data. The total energy is decomposed into four terms of physical significance: hydrogen bonding interaction, stacking interactions, backbone interactions, and electrostatic interactions. The first three interactions are treated within DFT, whereas the last one is included within a mean field approximation. Our double-stranded RNA coarse-grained model predicts stable helical structures for RNA. Other characteristics, such as structural or mechanical properties are reproduced with a very good accuracy. The development of the coarse-grained model for RNA allows extending the spatial and temporal length scales accessed by computer simulations and being able to model RNA-related biophysical processes, as well as novel RNA nanostructures.


Assuntos
Teoria da Densidade Funcional , RNA de Cadeia Dupla/química , Pareamento de Bases , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Eletricidade Estática , Termodinâmica
13.
Phys Rev E ; 97(3-1): 033308, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776036

RESUMO

We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

14.
J Phys Chem B ; 122(5): 1573-1579, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328657

RESUMO

Proteins are marginally stable soft-matter entities that can be disrupted using a variety of perturbative stresses, including thermal, chemical, or mechanical ones. Fluid under extreme flow conditions is a possible route to probe the weakness of biomolecules and collect information on the molecular cohesive interactions that secure their stability. Moreover, in many cases, physiological flow triggers the functional response of specialized proteins as occurring in blood coagulation or cell adhesion. We deploy the Lattice Boltzmann molecular dynamics technique based on the coarse-grained model for protein OPEP to study the mechanism of protein unfolding under Couette flow. Our simulations provide a clear view of how structural elements of the proteins are affected by shear, and for the simple study case, the ß-hairpin, we exploited the analogy to pulling experiments to quantify the mechanical forces acting on the protein under shear.


Assuntos
Simulação de Dinâmica Molecular , Desdobramento de Proteína , Receptores de GABA-B/química , Cinética , Conformação Proteica
15.
Biochem Biophys Res Commun ; 498(2): 296-304, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28917842

RESUMO

Biomolecules are complex machines that are optimized by evolution to properly fulfill or contribute to a variety of biochemical tasks in the cellular environment. Computer simulations based on quantum mechanics and atomistic force fields have been proven to be a powerful microscope for obtaining valuable insights into many biological, physical, and chemical processes. Many interesting phenomena involve, however, a time scale and a number of degrees of freedom, notably if crowding is considered, that cannot be explored at an atomistic resolution. To bridge the gap between reality and simulation, many different advanced computational techniques and coarse-grained (CG) models have been developed. Here, we report some applications of the CG OPEP protein model to amyloid fibril formation, the response of catch-bond proteins to two types of fluid flow, and interactive simulations to fold peptides with well-defined 3D structures or with intrinsic disorder.


Assuntos
Peptídeos beta-Amiloides/química , Modelos Moleculares , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Simulação de Dinâmica Molecular , Método de Monte Carlo , Dobramento de Proteína
16.
EuroIntervention ; 13(14): 1696-1704, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28649949

RESUMO

AIMS: Fractional flow reserve (FFR) estimated from coronary computed tomography angiography (CT-FFR) offers non-invasive detection of lesion-specific ischaemia. We aimed to develop and validate a fast CT-FFR algorithm utilising the Lattice Boltzmann method for blood flow simulation (LBM CT-FFR). METHODS AND RESULTS: Sixty-four patients with clinically indicated CTA and invasive FFR measurement from three institutions were retrospectively analysed. CT-FFR was performed using an onsite tool interfacing with a commercial Lattice Boltzmann fluid dynamics cloud-based platform. Diagnostic accuracy of LBM CT-FFR ≤0.8 and percent diameter stenosis >50% by CTA to detect invasive FFR ≤0.8 were compared using area under the receiver operating characteristic curve (AUC). Sixty patients successfully underwent LBM CT-FFR analysis; 29 of 73 lesions in 69 vessels had invasive FFR ≤0.8. Total time to perform LBM CT-FFR was 40±10 min. Compared to invasive FFR, LBM CT-FFR had good correlation (r=0.64), small bias (0.009) and good limits of agreement (-0.223 to 0.206). The AUC of LBM CT-FFR (AUC=0.894, 95% confidence interval [CI]: 0.792-0.996) was significantly higher than CTA (AUC=0.685, 95% CI: 0.576-0.794) to detect FFR ≤0.8 (p=0.0021). Per-lesion specificity, sensitivity, and accuracy of LBM CT-FFR were 97.7%, 79.3%, and 90.4%, respectively. CONCLUSIONS: LBM CT-FFR has very good diagnostic accuracy to detect lesion-specific ischaemia (FFR ≤0.8) and can be performed in less than one hour.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Reserva Fracionada de Fluxo Miocárdico , Isquemia Miocárdica/diagnóstico por imagem , Idoso , Área Sob a Curva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
17.
Langmuir ; 33(42): 11635-11645, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28793765

RESUMO

We have developed a theoretical and computational approach to deal with systems that involve a disparate range of spatiotemporal scales, such as those composed of colloidal particles or polymers moving in a fluidic molecular environment. Our approach is based on a multiscale modeling that combines the slow dynamics of the large particles with the fast dynamics of the solvent into a unique framework. The former is numerically solved via Molecular Dynamics and the latter via a multicomponent Lattice Boltzmann. The two techniques are coupled together to allow for a seamless exchange of information between the descriptions. Being based on a kinetic multicomponent description of the fluid species, the scheme is flexible in modeling charge flow within complex geometries and ranging from large to vanishing salt concentration. The details of the scheme are presented and the method is applied to the problem of translocation of a charged polymer through a nanopores. Lastly, we discuss the advantages and complexities of the approach.

18.
Philos Trans A Math Phys Eng Sci ; 374(2080)2016 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-27698046

RESUMO

We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.


Assuntos
Biopolímeros/química , Biopolímeros/metabolismo , Fenômenos Fisiológicos Celulares/fisiologia , Microambiente Celular/fisiologia , Modelos Biológicos , Modelos Químicos , Animais , Simulação por Computador , Humanos , Transdução de Sinais/fisiologia
19.
J Chem Phys ; 145(3): 035102, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27448906

RESUMO

Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aß16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aß16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aß16-22 peptide system, the simulation of ∼300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aß16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas , Algoritmos , Difusão , Fricção , Hidrodinâmica , Cinética , Simulação de Dinâmica Molecular , Multimerização Proteica , Soluções
20.
Soft Matter ; 12(26): 5727-38, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27301440

RESUMO

We discuss different definitions of pressure for a system of active spherical particles driven by a non-thermal coloured noise. We show that mechanical, kinetic and free-energy based approaches lead to the same result up to first order in the non-equilibrium expansion parameter. The first prescription is based on a generalisation of the kinetic mesoscopic virial equation and expresses the pressure exerted on the walls in terms of the average of the virial of the inter-particle forces. In the second approach, the pressure and the surface tension are identified with the volume and area derivatives, respectively, of the partition function associated with the known stationary non-equilibrium distribution of the model. The third method is a mechanical approach and is related to the work necessary to deform the system. The pressure is obtained by comparing the expression of the work in terms of local stress and strain with the corresponding expression in terms of microscopic distribution. This is determined from the force balance encoded in the Born-Green-Yvon equation. Such a method has the advantage of giving a formula for the local pressure tensor and the surface tension even in inhomogeneous situations. By direct inspection, we show that the three procedures lead to the same values of the pressure, and give support to the idea that the partition function, obtained via the unified coloured noise approximation, is more than a formal property of the system, but determines the stationary non-equilibrium thermodynamics of the model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA