Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ground Water ; 62(1): 34-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37797066

RESUMO

Water table depth (WTD) has a substantial impact on the connection between groundwater dynamics and land surface processes. Due to the scarcity of WTD observations, physically-based groundwater models are growing in their ability to map WTD at large scales; however, they are still challenged to represent simulated WTD compared to well observations. In this study, we develop a purely data-driven approach to estimating WTD at continental scale. We apply a random forest (RF) model to estimate WTD over most of the contiguous United States (CONUS) based on available WTD observations. The estimated WTD are in good agreement with well observations, with a Pearson correlation coefficient (r) of 0.96 (0.81 during testing), a Nash-Sutcliffe efficiency (NSE) of 0.93 (0.65 during testing), and a root mean square error (RMSE) of 6.87 m (15.31 m during testing). The location of each grid cell is rated as the most important feature in estimating WTD over most of the CONUS, which might be a surrogate for spatial information. In addition, the uncertainty of the RF model is quantified using quantile regression forests. High uncertainties are generally associated with locations having a shallow WTD. Our study demonstrates that the RF model can produce reasonable WTD estimates over most of the CONUS, providing an alternative to physics-based modeling for modeling large-scale freshwater resources. Since the CONUS covers many different hydrologic regimes, the RF model trained for the CONUS may be transferrable to other regions with a similar hydrologic regime and limited observations.


Assuntos
Água Subterrânea , Algoritmo Florestas Aleatórias , Estados Unidos , Rios , Água Doce , Monitoramento Ambiental
2.
Mon Not R Astron Soc ; 485(2): 2492-2504, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30880842

RESUMO

Previous studies have shown the filamentary structures in the cosmic web influence the alignments of nearby galaxies. We study this effect in the LOWZ sample of the Sloan Digital Sky Survey using the 'Cosmic Web Reconstruction' filament catalogue. We find that LOWZ galaxies exhibit a small but statistically significant alignment in the direction parallel to the orientation of nearby filaments. This effect is detectable even in the absence of nearby galaxy clusters, which suggests it is an effect from the matter distribution in the filament. A non-parametric regression model suggests that the alignment effect with filaments extends over separations of 30-40 Mpc. We find that galaxies that are bright and early-forming align more strongly with the directions of nearby filaments than those that are faint and late-forming; however, trends with stellar mass are less statistically significant, within the narrow range of stellar mass of this sample.

3.
Nature ; 489(7416): 406-8, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22996554

RESUMO

Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6-11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA