Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(12): e0189413, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29253878

RESUMO

Soluble forms of oligomeric beta-amyloid (Aß) are thought to play a central role in Alzheimer's disease (AD). Transgenic manipulation of methylation of the serine/threonine protein phosphatase, PP2A, was recently shown to alter the sensitivity of mice to AD-related impairments resulting from acute exposure to elevated levels of Aß. In addition, eicosanoyl-5-hydroxytryptamide (EHT), a naturally occurring component from coffee beans that modulates PP2A methylation, was shown to confer therapeutic benefits in rodent models of AD and Parkinson's disease. Here, we tested the hypothesis that EHT protects animals from the pathological effects of exposure to elevated levels of soluble oligomeric Aß. We treated mice with EHT-containing food at two different doses and assessed the sensitivity of these animals to Aß-induced behavioral and electrophysiological impairments. We found that EHT administration protected animals from Aß-induced cognitive impairments in both a radial-arm water maze and contextual fear conditioning task. We also found that both chronic and acute EHT administration prevented Aß-induced impairments in long-term potentiation. These data add to the accumulating evidence suggesting that interventions with pharmacological agents, such as EHT, that target PP2A activity may be therapeutically beneficial for AD and other neurological conditions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Transtornos Cognitivos/prevenção & controle , Serotonina/análogos & derivados , Doença de Alzheimer/patologia , Animais , Café , Cognição/efeitos dos fármacos , Condicionamento Psicológico , Modelos Animais de Doenças , Eletrofisiologia , Medo , Feminino , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/patologia , Plasticidade Neuronal , Fosforilação , Serotonina/farmacologia , Solubilidade
2.
Methods Enzymol ; 554: 255-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25725526

RESUMO

The first step in the mammalian metabolism of H2S is catalyzed by sulfide:quinone oxidoreductase (SQOR). Human SQOR is an integral membrane protein, which presumably interacts with the inner mitochondrial membrane in a monotopic fashion. The enzyme is a member of a family of flavoprotein disulfide oxidoreductases (e.g., glutathione reductase) that utilize a Cys-S-S-Cys disulfide bridge as an additional redox center. SQOR catalyzes a two-electron oxidation of H2S to sulfane sulfur using coenzyme Q as electron acceptor. The enzyme also requires a third substrate to act as the acceptor of the sulfane sulfur from a cysteine persulfide intermediate. Here, we describe a method for the bacterial expression of human SQOR as a catalytically active membrane-bound protein, procedures for solubilization and purification of the recombinant protein to >95% homogeneity, and spectrophotometric assays to monitor SQOR-mediated H2S oxidation in reactions with different sulfane sulfur acceptors.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Quinona Redutases/fisiologia , Biocatálise , Ensaios Enzimáticos , Escherichia coli , Humanos , Sulfeto de Hidrogênio/química , Cinética , Oxirredução , Quinona Redutases/química , Quinona Redutases/isolamento & purificação
3.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1434-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286958

RESUMO

Ubiquitin has many attributes suitable for a crystallization chaperone, including high stability and ease of expression. However, ubiquitin contains a high surface density of lysine residues and the doctrine of surface-entropy reduction suggests that these lysines will resist participating in packing interactions and thereby impede crystallization. To assess the contributions of these residues to crystallization behavior, each of the seven lysines of ubiquitin was mutated to serine and the corresponding single-site mutant proteins were expressed and purified. The behavior of these seven mutants was then compared with that of the wild-type protein in a 384-condition crystallization screen. The likelihood of obtaining crystals varied by two orders of magnitude within this set of eight proteins. Some mutants crystallized much more readily than the wild type, while others crystallized less readily. X-ray crystal structures were determined for three readily crystallized variants: K11S, K33S and the K11S/K63S double mutant. These structures revealed that the mutant serine residues can directly promote crystallization by participating in favorable packing interactions; the mutations can also exert permissive effects, wherein crystallization appears to be driven by removal of the lysine rather than by addition of a serine. Presumably, such permissive effects reflect the elimination of steric and electrostatic barriers to crystallization.


Assuntos
Ubiquitina/química , Substituição de Aminoácidos , Cristalização , Cristalografia por Raios X , Entropia , Humanos , Ubiquitina/genética
4.
Biochemistry ; 53(28): 4739-53, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24981631

RESUMO

Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR's inability to produce the glutathione persulfide (GSS(-)) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS(-). Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS(-) is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower Km values for glutathione observed in the presence of SDO. The combined action of GSS(-) and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO-TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.


Assuntos
Sulfeto de Hidrogênio/química , Proteínas de Neoplasias/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Humanos , Sulfeto de Hidrogênio/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína
5.
Biochemistry ; 51(34): 6804-15, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22852582

RESUMO

Sulfide:quinone oxidoreductase (SQOR) is a membrane-bound enzyme that catalyzes the first step in the mitochondrial metabolism of H(2)S. Human SQOR is successfully expressed at low temperature in Escherichia coli by using an optimized synthetic gene and cold-adapted chaperonins. Recombinant SQOR contains noncovalently bound FAD and catalyzes the two-electron oxidation of H(2)S to S(0) (sulfane sulfur) using CoQ(1) as an electron acceptor. The prosthetic group is reduced upon anaerobic addition of H(2)S in a reaction that proceeds via a long-wavelength-absorbing intermediate (λ(max) = 673 nm). Cyanide, sulfite, or sulfide can act as the sulfane sulfur acceptor in reactions that (i) exhibit pH optima at 8.5, 7.5, or 7.0, respectively, and (ii) produce thiocyanate, thiosulfate, or a putative sulfur analogue of hydrogen peroxide (H(2)S(2)), respectively. Importantly, thiosulfate is a known intermediate in the oxidation of H(2)S by intact animals and the major product formed in glutathione-depleted cells or mitochondria. Oxidation of H(2)S by SQOR with sulfite as the sulfane sulfur acceptor is rapid and highly efficient at physiological pH (k(cat)/K(m,H(2)S) = 2.9 × 10(7) M(-1) s(-1)). A similar efficiency is observed with cyanide, a clearly artificial acceptor, at pH 8.5, whereas a 100-fold lower value is seen with sulfide as the acceptor at pH 7.0. The latter reaction is unlikely to occur in healthy individuals but may become significant under certain pathological conditions. We propose that sulfite is the physiological acceptor of the sulfane sulfur and that the SQOR reaction is the predominant source of the thiosulfate produced during H(2)S oxidation by mammalian tissues.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Quinona Redutases/metabolismo , Enxofre/metabolismo , Biocatálise , Humanos , Concentração de Íons de Hidrogênio , Cinética , Quinona Redutases/química , Quinona Redutases/genética
6.
Neurochem Res ; 36(2): 232-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21080067

RESUMO

Our earlier finding that the activity of protein phosphatase 2A from rat brain is inhibited by micromolar concentrations of the dithiol cross-linking reagent phenylarsine oxide (PAO) has encouraged the hypothesis that the catalytic subunit (PP2Ac) of PP2A contains one or more pairs of closely-spaced (vicinal) thiol pairs that may contribute to regulation of the enzyme. The results of the present study demonstrate using immobilized PAO-affinity chromatography that PP2Ac from rat brain formed stable DTT-sensitive adducts with PAO with or without associated regulatory subunits. In addition, a subset of the PAO-binding vicinal thiols of PP2Ac was readily oxidized to disulfide bonds in vitro. Importantly, a small fraction of PP2Ac was still found to contain disulfide bonds after applying stringent conditions designed to prevent protein disulfide bond formation during homogenization and fractionation of the brains. These findings establish the presence of potentially regulatory and redox-active PAO-binding vicinal thiols on the catalytic subunit of PP2A and suggest that a population of PP2Ac may contain disulfide bonds in vivo.


Assuntos
Arsenicais/metabolismo , Inibidores Enzimáticos/metabolismo , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Dissulfetos/metabolismo , Ditiotreitol/metabolismo , Oxirredução , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA