Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Plant Physiol ; 257: 153334, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373827

RESUMO

Roots vary their permeability to aid radial transport of solutes towards xylem vessels in response to nutritional cues. Nitrogen (N) depletion was previously shown to induce early suberization of endodermal cell walls and reduce hydraulic conductivity of barley roots suggesting reduced apoplastic transport of ions (Armand et al., 2019). Suberization may also limit transcellular ion movement by blocking access to transporters (Barberon et al., 2016). The aim of this study was to confirm that N depletion induced suberization in the roots of barley and demonstrate that this was a specific effect in response to NO3- depletion. Furthermore, in roots with early and enhanced suberization, we assessed their ability for transporter-mediated NO3- influx. N depletion induced lateral root elongation and early and enhanced endodermal suberization of the seminal root of each genotype. Both root to shoot NO3- translocation and net N uptake was half that of plants supplied with steady-state NO3-. Genes with predicted functions in suberin synthesis (HvHORST) and NO3- transport (HvNRT2.2) were induced under N-deplete conditions. N-deplete roots had a higher capacity for high-affinity NO3- influx in early suberized roots than under optimal NO3-. In conclusion, NO3- depletion induced early and enhanced suberization in the roots of barley, however, suberization did not restrict transcellular NO3- transport.


Assuntos
Endoderma/fisiologia , Hordeum/metabolismo , Lipídeos/fisiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Transporte Biológico , Raízes de Plantas/metabolismo
2.
Ann Bot ; 110(8): 1559-72, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22989463

RESUMO

BACKGROUND AND AIMS: Legumes overcome nitrogen limitations by entering into a mutualistic symbiosis with N(2)-fixing bacteria (rhizobia). Fully compatible associations (effective) between Trifolium spp. and Rhizobium leguminosarum bv. trifolii result from successful recognition of symbiotic partners in the rhizosphere, root hair infection and the formation of nodules where N(2)-fixing bacteroids reside. Poorly compatible associations can result in root nodule formation with minimal (sub-optimal) or no (ineffective) N(2)-fixation. Despite the abundance and persistence of strains in agricultural soils which are poorly compatible with the commercially grown clover species, little is known of how and why they fail symbiotically. The aims of this research were to determine the morphological aberrations occurring in sub-optimal and ineffective clover nodules and to determine whether reduced bacteroid numbers or reduced N(2)-fixing activity is the main cause for the Sub-optimal phenotype. METHODS: Symbiotic effectiveness of four Trifolium hosts with each of four R. leguminosarum bv. trifolii strains was assessed by analysis of plant yields and nitrogen content; nodule yields, abundance, morphology and internal structure; and bacteroid cytology, quantity and activity. KEY RESULTS: Effective nodules (Nodule Function 83-100 %) contained four developmental zones and N(2)-fixing bacteroids. In contrast, Sub-optimal nodules of the same age (Nodule Function 24-57 %) carried prematurely senescing bacteroids and a small bacteroid pool resulting in reduced shoot N. Ineffective-differentiated nodules carried bacteroids aborted at stage 2 or 3 in differentiation. In contrast, bacteroids were not observed in Ineffective-vegetative nodules despite the presence of bacteria within infection threads. CONCLUSIONS: Three major responses to N(2)-fixation incompatibility between Trifolium spp. and R. l. trifolii strains were found: failed bacterial endocytosis from infection threads into plant cortical cells, bacteroid differentiation aborted prematurely, and a reduced pool of functional bacteroids which underwent premature senescence. We discuss possible underlying genetic causes of these developmental abnormalities and consider impacts on N(2)-fixation of clovers.


Assuntos
Rhizobium leguminosarum/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Simbiose , Trifolium/fisiologia , Genótipo , Fixação de Nitrogênio , Fenótipo , Filogenia , Rhizobium leguminosarum/citologia , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/fisiologia , Trifolium/citologia , Trifolium/crescimento & desenvolvimento , Trifolium/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA