Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Colloid Interface Sci ; 564: 344-356, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31918202

RESUMO

Thermoresponsive copolymer microgels based on the biocompatible monomer N-vinylcaprolactam (VCL) and the hydrophobic comonomer 4-tert-butylcyclohexylacrylate (TBCHA) with highly tunable comonomers ratio were for the first time synthesized by miniemulsion polymerization. Their physical properties in aqueous solution and at the solid interface were characterized using dynamic light scattering (DLS), atomic force microscopy (AFM) and dissipative particle dynamics (DPD) simulations. The results show a significant decrease of the swelling rate of the obtained microgels with an increase of the amount of the hydrophobic comonomer. In the case when the fraction of TBCHA is equal or higher than the fraction of VCL, the microgels become almost insensitive to the temperature changes, and the amount of water inside the microgels appeared to be diminishingly small. In the opposite case, if the VCL fraction is major, the copolymer microgels preserve their softness and deformability while being adsorbed onto a solid surface. At the same time, all samples have shown a good colloidal stability and a low polydispersity in size. Thus, the presented polymerization technique is applicable for the fabrication of microgels using hydrophobic monomers, which are not accessible by conventional precipitation polymerization. We demonstrate that the mechanical properties and the temperature-responsiveness of the copolymer microgels can be precisely adjusted by the content of the hydrophobic comonomer.

2.
ACS Omega ; 4(2): 3690-3699, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459582

RESUMO

Poly(N-isopropylacrylamide) microgels have found various uses in fundamental polymer and colloid science as well as in different applications. They are conveniently prepared by precipitation polymerization. In this reaction, radical polymerization and colloidal stabilization interact with each other to produce well-defined thermosensitive particles of narrow size distribution. However, the underlying mechanism of precipitation polymerization has not been fully understood. In particular, the crucial early stages of microgel formation have been poorly investigated so far. In this contribution, we have used small-angle neutron scattering in conjunction with a stopped-flow device to monitor the particle growth during precipitation polymerization in situ. The average particle volume growth is found to follow pseudo-first order kinetics, indicating that the polymerization rate is determined by the availability of the unreacted monomer, as the initiator concentration does not change considerably during the reaction. This is confirmed by calorimetric investigation of the polymerization process. Peroxide initiator-induced self-crosslinking of N-isopropylacrylamide and the use of the bifunctional crosslinker N,N'-methylenebisacrylamide are shown to decrease the particle number density in the batch. The results of the in situ small-angle neutron scattering measurements indicate that the particles form at an early stage in the reaction and their number density remains approximately the same thereafter. The overall reaction rate is found to be sensitive to monomer and initiator concentration in accordance with a radical solution polymerization mechanism, supporting the results from our earlier studies.

3.
J Colloid Interface Sci ; 540: 612-622, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30690386

RESUMO

HYPOTHESIS: Facile approaches for the development of new tailored drug carriers are of high importance for the controlled administration of drugs. Herein we report a method for the synthesis of water-soluble reactive copolymers with well-defined architectures for fabrication of redox-sensitive degradable prodrug nanogels for intracellular drug release. EXPERIMENTS: Primary amine-functionalized statistical copolymers were obtained by hydrolysis of poly(N-vinylpyrrolidone-co-N-vinylformamide) copolymers which were synthesized via Reversible Addition-Fragmentation chain-Transfer (RAFT) polymerization. Redox-sensitive degradable nanogels with varying crosslinking densities were synthesized with a redox-sensitive cross-linker. Doxorubicin (DOX) was loaded to form prodrug nanogels (DNG) with hydrodynamic radius from 142 nm to 240 nm. FINDINGS: The nanogels demonstrated slower degradation and retarded drug release rate with increased crosslinking density in the presence of 10 mM reduced glutathione (GSH) at 37 °C. The in vitro release studies revealed that maximum 85% DOX was released in 24 h under a reductive environment. Intracellular drug release profiles in HeLa cells indicated that the DOX delivery rate was tunable via varying crosslinking density of the nanogels. Cell viability assay demonstrated that the blank nanogels were biocompatible in wide concentrations up to 0.5 mg/mL while the DOX-loaded nanogels displayed medium antitumor activity with IC50 (half-maximal inhibitory concentration) of 1.80 µg/mL, 2.57 µg/mL, 3.01 µg/mL for DNG5, DNG10 and DNG15 respectively.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Géis/química , Aminação , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Oxirredução
4.
Theranostics ; 7(6): 1499-1510, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529633

RESUMO

Fluorescence-mediated tomography (FMT) is a quantitative three-dimensional imaging technique for preclinical research applications. The combination with micro-computed tomography (µCT) enables improved reconstruction and analysis. The aim of this study is to assess the potential of µCT-FMT and kinetic modeling to determine elimination and retention of typical model drugs and drug delivery systems. We selected four fluorescent probes with different but well-known biodistribution and elimination routes: Indocyanine green (ICG), hydroxyapatite-binding OsteoSense (OS), biodegradable nanogels (NG) and microbubbles (MB). µCT-FMT scans were performed in twenty BALB/c nude mice (5 per group) at 0.25, 2, 4, 8, 24, 48 and 72 h after intravenous injection. Longitudinal organ curves were determined using interactive organ segmentation software and a pharmacokinetic whole-body model was implemented and applied to compute physiological parameters describing elimination and retention. ICG demonstrated high initial hepatic uptake which decreased rapidly while intestinal accumulation appeared for around 8 hours which is in line with the known direct uptake by hepatocytes followed by hepatobiliary elimination. Complete clearance from the body was observed at 48 h. NG showed similar but slower hepatobiliary elimination because these nanoparticles require degradation before elimination can take place. OS was strongly located in the bones in addition to high signal in the bladder at 0.25 h indicating fast renal excretion. MB showed longest retention in liver and spleen and low signal in the kidneys likely caused by renal elimination or retention of fragments. Furthermore, probe retention was found in liver (MB, NG and OS), spleen (MB) and kidneys (MB and NG) at 72 h which was confirmed by ex vivo data. The kinetic model enabled robust extraction of physiological parameters from the organ curves. In summary, µCT-FMT and kinetic modeling enable differentiation of hepatobiliary and renal elimination routes and allow for the noninvasive assessment of retention sites in relevant organs including liver, kidney, bone and spleen.


Assuntos
Estruturas Animais/efeitos dos fármacos , Corantes Fluorescentes/farmacocinética , Imageamento Tridimensional/métodos , Microtomografia por Raio-X/métodos , Animais , Corantes Fluorescentes/administração & dosagem , Camundongos Endogâmicos BALB C , Camundongos Nus
5.
J Mater Chem B ; 4(30): 5127-5137, 2016 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263510

RESUMO

Herein we report the synthesis of biocompatible stimuli-responsive core-shell microgels consisting of a poly(N-vinylcaprolactam) (PVCL) core and a poly(2-methoxyethyl acrylate) (PMEA) corona via one-step surfactant-free precipitation copolymerization. The copolymerization process was investigated by reaction calorimetry, microgel growth was monitored by in situ dynamic light scattering and the chemical structure of core-shell microgels was characterized by Raman spectroscopy. It was possible to incorporate up to 32 mol% MEA into the PVCL/MEA microgels without loss of colloidal stability and broadening of the size distribution. The core-shell morphology of microgels was confirmed by transverse magnetization relaxation 1H-NMR, dynamic light scattering (DLS), atomic force microscopy (AFM) and viscosimetry. By means of the NMR data, calorimetry and viscosity measurements it could be shown that MEA is mainly located in the microgel shell. This leads to hindered temperature-induced swelling and collapsing of the PVCL-core, as demonstrated by DLS measurements, due to the fact that the PMEA-shell exhibits a very low LCST around 5 °C. These results could also be confirmed by AFM: an increasing MEA-content leads to the formation of dense and compact core-shell microgels and results in a loss of their softness and deformability. Due to the presence of the PMEA-shell these microgels can be endocytosed much faster by HeLa cells maintaining their viability and can be suitable candidates for the design of drug carriers or imaging/diagnostic systems.

6.
J Mater Chem B ; 4(47): 7572-7583, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263814

RESUMO

In this study, thermal and redox dual sensitive nanogels based on N-vinylcaprolactam (VCL) and N-succinimidyl methacrylate (Suma) crosslinked with diallyl disulfide were synthesized via a facile and straightforward method. The reactive succinimide groups were mainly located in the nanogel shell which increases considerably their accessibility for conjugation reactions. Doxorubicin (DOX) was successfully loaded into the nanogel through two different routes. Approximately 91.3% of DOX molecules were covalently bound to the nanogel network via coupling with succinimide groups under mild conditions to obtain prodrug nanogels, while 8.7% of DOX molecules were captured into the nanogels via electrostatic interactions with the -COOH group from the hydrolyzed ester groups of the nanogels. The DOX-loaded nanogels demonstrated volume phase transition temperature (VPTT) near human physiological temperature. The nanogels shrink near body temperature, which could help lock the drug molecules stably in blood circulation. The conjugation of DOX molecules in nanogels avoided premature unspecific drug release under physiological conditions. The small amount of physically loaded DOX (due to electrostatic interactions) could be partially released as free DOX due to the increasing acidic conditions in the endosome/lysosome pathway. The chemically conjugated DOX was released in the form of a prodrug polymer triggered by the high concentration of glutathione in the cytosol that induced nanogel degradation. The present drug delivery system exhibits a sustainable delivery profile in the intracellular release study and high antitumor activity. We are convinced that the thermal and reduction dual-responsive prodrug nanogels have tremendous potential in controlled drug release.

7.
G Ital Med Lav Ergon ; 34(2): 202-6, 2012.
Artigo em Italiano | MEDLINE | ID: mdl-22888731

RESUMO

Work-related musculoskeletal disorders of upper limbs are very common among dental hygienists. To minimize the risk of their occurrence, it is essential that attention be paid to proper ergonomics in the workplace, including the selection of instrumentation. At present there are no specific guidelines but only some indications for the selection of the different hand tools. The main purpose of this study was to make a comparative analysis of different types of handles of hand tools used for root planing (Gracey curettes). Nine dental hygienists were interviewed with a questionnaire aimed to assess three different types of curette handle. The results showed that lightness, being of solid steel, having a cylindrical non-uniform shape with full enlarged cross-section, and being silicon coated with non-slip ends are the preferred characteristics for a curette handle. These considerations may assist both manufacturers in designing new hand instruments and clinicians in selecting the most ergonomic ones to buy.


Assuntos
Profilaxia Dentária/instrumentação , Ergonomia , Doenças Profissionais/prevenção & controle , Profilaxia Dentária/classificação , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA