Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Public Health ; 8: 578089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33763399

RESUMO

Objective: Most infections with Enterobacteriaceae producing AmpC ß-lactamase (AmpC)-, extended-spectrum ß-lactamase (ESBL)-, and carbapenemase-producing bacteria, vancomycin-resistant Enterococcus as well as naturally resistant non-fermenting bacteria such as Pseudomonas aeruginosa, are related to a prior colonization of the gut microbiota. The objective of this study was to determine whether treatment with probiotics during an antibiotic treatment could prevent the colonization of the gut microbiota with multi-drug resistant bacteria. Method: In total, 120 patients treated for 10 days with amoxicillin-clavulanate antibiotics were included in a randomized, placebo-controlled, double-blinded trial, comparing the effects of a 30 days treatment with placebo Saccharomyces boulardii CNCM I-745® and a probiotic mixture containing Saccharomyces boulardii, Lactobacillus acidophilus NCFM, Lactobacillus paracasei Lpc-37, Bifidobacterium lactis Bl-04, and Bifidobacterium lactis Bi-07 (Bactiol duo®). Study treatment was initiated within 48 h of the antibiotic being initiated. Most of the patients included were elderly with a mean age of 78 years old with multiple comorbidities. Stools were collected at the time of inclusion in the trial, at the end of the antibiotic treatment, and the end of the study treatment. These were cultured on selective antibiotic media. Results: Treatment with the probiotic mixture led to a significant decline in colonization with Pseudomonas after antibiotic treatment from 25 to 8.3% (p = 0.041). Colonization with AmpC-producing enterobacteria was transiently increased after the antibiotic treatment (p = 0.027) and declined after the probiotic intervention (p= 0.041). No significant changes were observed in the placebo and Saccharomyces groups. Up to 2 years after the trial, no infection with ESBL-producing bacteria was observed in the probiotic mixture group. Conclusion: The association of Saccharomyces boulardii with specific strains of Lactobacillus and Bifidobacterium influences antibiotic treatment by counteracting the colonization of the colon microbiota with antibiotic-resistant pathogens.


Assuntos
Microbioma Gastrointestinal , Preparações Farmacêuticas , Probióticos , Saccharomyces , Idoso , Antibacterianos/uso terapêutico , Bifidobacterium , Hospitais , Humanos , Lactobacillus , Probióticos/uso terapêutico
3.
J Clin Microbiol ; 57(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30487304

RESUMO

Rapid identification and susceptibility testing results are of importance for the early appropriate therapy of bloodstream infections. The ePlex (GenMark Diagnostics) blood culture identification (BCID) panels are fully automated PCR-based assays designed to identify Gram-positive and Gram-negative bacteria, fungi, and bacterial resistance genes within 1.5 h from positive blood culture. Consecutive non-duplicate positive blood culture episodes were tested by the ePlex system prospectively. The choice of panel(s) (Gram-positive, Gram-negative, and/or fungal pathogens) was defined by Gram-stained microscopy of blood culture-positive bottles (BacT/Alert; bioMérieux). Results with the ePlex panels were compared to the identification results obtained by standard culture-based workflow. In total, 216 positive blood culture episodes were evaluable, yielding 263 identification results. The sensitivity/positive predictive value for detection by the ePlex panels of targeted cultured isolates were 97% and 99% for the Gram-positive panel and 99% and 96% for the Gram-negative panel, resulting in overall agreement rates of 96% and 94% for the Gram-positive and Gram-negative panel, respectively. All 26 samples with targeted resistance results were correctly detected by the ePlex panels. The ePlex panels provided highly accurate results and proved to be an excellent diagnostic tool for the rapid identification of pathogens causing bloodstream infections. The short time to results may be of added value for optimizing the clinical management of patients with sepsis.


Assuntos
Bacteriemia/diagnóstico , Bactérias/isolamento & purificação , Hemocultura/métodos , Fungemia/diagnóstico , Fungos/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Automação Laboratorial/métodos , Bactérias/classificação , Bactérias/genética , Fungos/classificação , Fungos/genética , Humanos , Valor Preditivo dos Testes , Estudos Prospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA