Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Plants (Basel) ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611485

RESUMO

Flax seed is one of the richest plant sources of linolenic acid (LIN) and also contains unsaturated linoleic acid (LIO) and oleic acid (OLE). Stearoyl-ACP desaturases (SADs) and fatty acid desaturases (FADs) play key roles in the synthesis of flax fatty acids (FAs). However, there is no holistic view of which genes from the SAD and FAD families and at which developmental stages have the highest expression levels in flax seeds, as well as the influence of genotype and growth conditions on the expression profiles of these genes. We sequenced flax seed transcriptomes at 3, 7, 14, 21, and 28 days after flowering (DAF) for ten flax varieties with different oil FA compositions grown under three temperature/watering conditions. The expression levels of 25 genes of the SAD, FAD2, and FAD3 families were evaluated. FAD3b, FAD3a, FAD2b-2, SAD3-1, SAD2-1, SAD2-2, SAD3-2, FAD2a-1, and FAD2a-2 had the highest expression levels, which changed significantly during seed development. These genes probably play a key role in FA synthesis in flax seeds. High temperature and insufficient watering shifted the maximum expression levels of FAD and SAD genes to earlier developmental stages, while the opposite trend was observed for low temperature and excessive watering. Differences in the FAD and SAD expression profiles under different growth conditions may affect the FA composition of linseed oil. Stop codons in the FAD3a gene, resulting in a reduced LIN content, decreased the level of FAD3a transcript. The obtained results provide new insights into the synthesis of linseed oil.

2.
Data Brief ; 52: 109827, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059001

RESUMO

Flax (Linum usitatissimum L.), one of the important and versatile crops, is used for the production of oil and fiber. To obtain high and stable yields of flax products, L. usitatissimum varieties should be cultivated under optimal conditions, including the composition of the soil microbiome. We evaluated the diversity of microorganisms in soils under conditions unfavorable for flax cultivation (suboptimal acidity or herbicide treatment) or infected with causative agents of harmful flax diseases (Septoria linicola, Colletotrichum lini, Melampsora lini, or Fusarium oxysporum f. sp. lini). For this purpose, twenty-two sod-podzolic soil samples were collected from flax fields and their metagenomes were analyzed using the regions of 16S ribosomal RNA gene (16S rDNA) and internal transcribed spacers (ITS) of the ribosomal RNA genes, which are used in phylogenetic studies of bacteria and fungi. Amplicons were sequenced on the Illumina MiSeq platform (reads of 300 + 300 bp). On average, we obtained 8,400 reads for ITS and 43,300 reads for 16S rDNA per sample. For identification of microorganisms in the soil samples, the Illumina reads were processed using DADA2. The raw data are deposited in the Sequence Read Archive under the BioProject accession number PRJNA956957. Tables listing the microorganisms identified in the soil samples are available in this article. The obtained dataset can be used to analyze the fungal and bacterial composition of flax field soils and their relationship to environmental conditions, including suboptimal soil acidity and infection with fungal pathogens. In addition, it can help to understand the influence of herbicide treatment on the microbial diversity of flax fields. Another useful application of our data is the ability to assess the suitability of the soil microbiome for flax cultivation.

3.
Front Genet ; 14: 1269837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075674

RESUMO

Sequencing whole plant genomes provides a solid foundation for applied and basic studies. Genome sequences of agricultural plants attract special attention, as they reveal information on the regulation of beneficial plant traits. Flax is a valuable crop cultivated for oil and fiber. Genome sequences of its representatives are rich sources of genetic information for the improvement of cultivated forms of the plant. In our work, we sequenced the first genome of flax with the dehiscence of capsules-Linum usitatissimum convar. сrepitans (Boenn.) Dumort-on the Oxford Nanopore Technologies (ONT) and Illumina platforms. We obtained 23 Gb of raw ONT data and 89 M of 150 + 150 paired-end Illumina reads and tested different tools for genome assembly and polishing. The genome assembly produced according to the Canu-Racon ×2-medaka-POLCA scheme had optimal contiguity and completeness: assembly length-412.6 Mb, N50-5.2 Mb, L50-28, and complete BUSCO-94.6% (64.0% duplicated, eudicots_odb10). The obtained high-quality genome assembly of L. usitatissimum convar. crepitans provides opportunities for further studies of evolution, domestication, and genome regulation in the section Linum.

4.
Biology (Basel) ; 12(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38132345

RESUMO

The white poplar (Populus alba L.) has good potential for a green economy and phytoremediation. Bioaugmentation using endophytic bacteria can be considered as a safe strategy to increase poplar productivity and its resistance to toxic urban conditions. The aim of our work was to find the most promising strains of bacterial endophytes to enhance the growth of white poplar in unfavorable environmental conditions. To this end, for the first time, we performed whole-genome sequencing of 14 bacterial strains isolated from the tissues of the roots of white poplar in different geographical locations. We then performed a bioinformatics search to identify genes that may be useful for poplar growth and resistance to environmental pollutants and pathogens. Almost all endophytic bacteria obtained from white poplar roots are new strains of known species belonging to the genera Bacillus, Corynebacterium, Kocuria, Micrococcus, Peribacillus, Pseudomonas, and Staphylococcus. The genomes of the strains contain genes involved in the enhanced metabolism of nitrogen, phosphorus, and metals, the synthesis of valuable secondary metabolites, and the detoxification of heavy metals and organic pollutants. All the strains are able to grow on media without nitrogen sources, which indicates their ability to fix atmospheric nitrogen. It is concluded that the strains belonging to the genus Pseudomonas and bacteria of the species Kocuria rosea have the best poplar growth-stimulating and bioaugmentation potential, and the roots of white poplar are a valuable source for isolation of endophytic bacteria for possible application in ecobiotechnology.

5.
Plants (Basel) ; 12(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960081

RESUMO

Flax (Linum usitatissimum L.) products are used in the food, pharmaceutical, textile, polymer, medical, and other industries. The creation of a pan-genome will be an important advance in flax research and breeding. The selection of flax genotypes that sufficiently cover the species diversity is a crucial step for the pan-genomic study. For this purpose, we have adapted a method based on Illumina sequencing of transcriptome libraries prepared using the Tn5 transposase (tagmentase). This approach reduces the cost of sample preparation compared to commercial kits and allows the generation of a large number of cDNA libraries in a short time. RNA-seq data were obtained for 192 flax plants (3-6 individual plants from 44 flax accessions of different morphology and geographical origin). Evaluation of the genetic relationship between flax plants based on the sequencing data revealed incorrect species identification for five accessions. Therefore, these accessions were excluded from the sample set for the pan-genomic study. For the remaining samples, typical genotypes were selected to provide the most comprehensive genetic diversity of flax for pan-genome construction. Thus, high-throughput sequencing of tagmentation-based transcriptome libraries showed high efficiency in assessing the genetic relationship of flax samples and allowed us to select genotypes for the flax pan-genomic analysis.

6.
Front Plant Sci ; 14: 1204899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860260

RESUMO

Members of the genus Populus L. play an important role in the formation of forests in the northern hemisphere and are used in urban landscaping and timber production. Populus species of closely related sections show extensive hybridization. Therefore, the systematics of the genus is rather complicated, especially for poplars of hybrid origin. We aimed to assess the efficiency of application of the sex-determining region (SDR) in addition to the nuclear and chloroplast genome loci traditionally used in phylogenetic studies of poplars to investigate relationships in sections Aigeiros Duby and Tacamahaca Spach. Targeted deep sequencing of NTS 5S rDNA, ITS, DSH 2, DSH 5, DSH 8, DSH 12, DSH 29, 6, 15, 16, X18, trnG-psbK-psbI, rps2-rpoC2, rpoC2-rpoC1, as well as SDR and ARR17 gene was performed for 379 poplars. The SDR and ARR17 gene together with traditionally used multicopy and single-copy loci of nuclear and chloroplast DNA allowed us to obtain a clustering that is most consistent with poplar systematics based on morphological data and to shed light on several controversial hypotheses about the origin of the studied taxa (for example, the inexpediency of separating P. koreana, P. maximowiczii, and P. suaveolens into different species). We present a scheme of relationships between species and hybrids of sections Aigeiros and Tacamahaca based on molecular genetic, morphological, and geographical data. The geographical proximity of species and, therefore, the possibility of hybridization between them appear to be more important than the affiliation of species to the same section. We speculate that sections Aigeiros and Tacamahaca are distinguished primarily on an ecological principle (plain and mountain poplars) rather than on a genetic basis. Joint analysis of sequencing data for the SDR and chloroplast genome loci allowed us to determine the ancestors of P. × petrovskoe - P. laurifolia (female tree) × P. × canadensis (male tree), and P. × rasumovskoe - P. nigra (female tree) × P. suaveolens (male tree). Thus, the efficiency of using the SDR for the study of poplars of sections Aigeiros and Tacamahaca and the prospects of its use for the investigation of species of the genus Populus were shown.

7.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834335

RESUMO

FAD (fatty acid desaturase) and SAD (stearoyl-ACP desaturase) genes play key roles in the synthesis of fatty acids (FA) and determination of oil composition in flax (Linum usitatissimum L.). We searched for FAD and SAD genes in the most widely used flax genome of the variety CDC Bethune and three available long-read assembled flax genomes-YY5, 3896, and Atlant. We identified fifteen FAD2, six FAD3, and four SAD genes. Of all the identified genes, 24 were present in duplicated pairs. In most cases, two genes from a pair differed by a significant number of gene-specific SNPs (single nucleotide polymorphisms) or even InDels (insertions/deletions), except for FAD2a-1 and FAD2a-2, where only seven SNPs distinguished these genes. Errors were detected in the FAD2a-1, FAD2a-2, FAD3c-1, and FAD3d-2 sequences in the CDC Bethune genome assembly but not in the long-read genome assemblies. Expression analysis of the available transcriptomic data for different flax organs/tissues revealed that FAD2a-1, FAD2a-2, FAD3a, FAD3b, SAD3-1, and SAD3-2 were specifically expressed in embryos/seeds/capsules and could play a crucial role in the synthesis of FA in flax seeds. In contrast, FAD2b-1, FAD2b-2, SAD2-1, and SAD2-2 were highly expressed in all analyzed organs/tissues and could be involved in FA synthesis in whole flax plants. FAD2c-2, FAD2d-1, FAD3c-1, FAD3c-2, FAD3d-1, FAD3d-2, SAD3-1, and SAD3-2 showed differential expression under stress conditions-Fusarium oxysporum infection and drought. The obtained results are essential for research on molecular mechanisms of fatty acid synthesis, FAD and SAD editing, and marker-assisted and genomic selection for breeding flax varieties with a determined fatty acid composition of oil.


Assuntos
Linho , Linho/genética , Linho/metabolismo , Transcriptoma , Melhoramento Vegetal , Ácidos Graxos/metabolismo , Genômica
8.
J Fungi (Basel) ; 9(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36983469

RESUMO

Flax (Linum usitatissimum L.) is attacked by numerous devastating fungal pathogens, including Colletotrichum lini, Aureobasidium pullulans, and Fusarium verticillioides (Fusarium moniliforme). The effective control of flax diseases follows the paradigm of extensive molecular research on pathogenicity. However, such studies require quality genome sequences of the studied organisms. This article reports on the approaches to assembling a high-quality fungal genome from the Oxford Nanopore Technologies data. We sequenced the genomes of C. lini, A. pullulans, and F. verticillioides (F. moniliforme) and received different volumes of sequencing data: 1.7 Gb, 3.9 Gb, and 11.1 Gb, respectively. To obtain the optimal genome sequences, we studied the effect of input data quality and genome coverage on assembly statistics and tested the performance of different assembling and polishing software. For C. lini, the most contiguous and complete assembly was obtained by the Flye assembler and the Homopolish polisher. The genome coverage had more effect than data quality on assembly statistics, likely due to the relatively low amount of sequencing data obtained for C. lini. The final assembly was 53.4 Mb long and 96.4% complete (according to the glomerellales_odb10 BUSCO dataset), consisted of 42 contigs, and had an N50 of 4.4 Mb. For A. pullulans and F. verticillioides (F. moniliforme), the best assemblies were produced by Canu-Medaka and Canu-Homopolish, respectively. The final assembly of A. pullulans had a length of 29.5 Mb, 99.4% completeness (dothideomycetes_odb10), an N50 of 2.4 Mb and consisted of 32 contigs. F. verticillioides (F. moniliforme) assembly was 44.1 Mb long, 97.8% complete (hypocreales_odb10), consisted of 54 contigs, and had an N50 of 4.4 Mb. The obtained results can serve as a guideline for assembling a de novo genome of a fungus. In addition, our data can be used in genomic studies of fungal pathogens or plant-pathogen interactions and assist in the management of flax diseases.

9.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768739

RESUMO

Radical prostatectomy is the gold standard treatment for prostate cancer (PCa); however, it does not always completely cure PCa, and patients often experience a recurrence of the disease. In addition, the clinical and pathological parameters used to assess the prognosis and choose further tactics for treating a patient are insufficiently informative and need to be supplemented with new markers. In this study, we performed RNA-Seq of PCa tissue samples, aimed at identifying potential prognostic markers at the level of gene expression and miRNAs associated with one of the key signs of cancer aggressiveness-lymphatic dissemination. The relative expression of candidate markers was validated by quantitative PCR, including an independent sample of patients based on archival material. Statistically significant results, derived from an independent set of samples, were confirmed for miR-148a-3p and miR-615-3p, as well as for the CST2, OCLN, and PCAT4 genes. Considering the obtained validation data, we also analyzed the predictive value of models based on various combinations of identified markers using algorithms based on machine learning. The highest predictive potential was shown for the "CST2 + OCLN + pT" model (AUC = 0.863) based on the CatBoost Classifier algorithm.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Transcriptoma , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias da Próstata/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Prostatectomia
11.
J Fungi (Basel) ; 10(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38248942

RESUMO

Colletotrichum lini is a flax fungal pathogen. The genus comprises differently virulent strains, leading to significant yield losses. However, there were no attempts to investigate the molecular mechanisms of C. lini pathogenicity from high-quality genome assemblies until this study. In this work, we sequenced the genomes of three C. lini strains of high (#390-1), medium (#757), and low (#771) virulence. We obtained more than 100× genome coverage with Oxford Nanopore Technologies reads (N50 = 12.1, 6.1, 5.0 kb) and more than 50× genome coverage with Illumina data (150 + 150 bp). Several assembly strategies were tested. The final assemblies were obtained using the Canu-Racon ×2-Medaka-Polca scheme. The assembled genomes had a size of 54.0-55.3 Mb, 26-32 contigs, N50 values > 5 Mb, and BUSCO completeness > 96%. A comparative genomic analysis showed high similarity among mitochondrial and nuclear genomes. However, a rearrangement event and the loss of a 0.7 Mb contig were revealed. After genome annotation with Funannotate, secreting proteins were selected using SignalP, and candidate effectors were predicted among them using EffectorP. The analysis of the InterPro annotations of predicted effectors revealed unique protein categories in each strain. The assembled genomes and the conducted comparative analysis extend the knowledge of the genetic diversity of C. lini and form the basis for establishing the molecular mechanisms of its pathogenicity.

12.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362031

RESUMO

High-quality genome sequences help to elucidate the genetic basis of numerous biological processes and track species evolution. For flax (Linum usitatissimum L.)-a multifunctional crop, high-quality assemblies from Oxford Nanopore Technologies (ONT) data were unavailable, largely due to the difficulty of isolating pure high-molecular-weight DNA. This article proposes a scheme for gaining a contiguous L. usitatissimum assembly using Nanopore data. We developed a protocol for flax nuclei isolation with subsequent DNA extraction, which allows obtaining about 5 µg of pure high-molecular-weight DNA from 0.5 g of leaves. Such an amount of material can be collected even from a single plant and yields more than 30 Gb of ONT data in two MinION runs. We performed a comparative analysis of different genome assemblers and polishers on the gained data and obtained the final 447.1-Mb assembly of L. usitatissimum line 3896 genome using the Canu-Racon (two iterations)-Medaka combination. The genome comprised 1695 contigs and had an N50 of 6.2 Mb and a completeness of 93.8% of BUSCOs from eudicots_odb10. Our study highlights the impact of the chosen genome construction strategy on the resulting assembly parameters and its eligibility for future genomic studies.


Assuntos
Linho , Nanoporos , Linho/genética , Genoma de Planta , Genômica , DNA
13.
Plants (Basel) ; 11(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35270121

RESUMO

The phylogeny of members of the family Linaceae DC. ex Perleb has not been adequately studied. In particular, data on the phylogenetic relationship between Linum stelleroides Planch. and other representatives of the blue-flowered flax are very controversial. In the present work, to clarify this issue, we obtained DNA sequences of three nuclear loci (IGS and ITS1 + 5.8S rDNA + ITS2 of the 35S rRNA gene and the 5S rRNA gene) and eight chloroplast loci (rbcL, the trnL-trnF intergenic spacer, matK, the 3' trnK intron, ndhF, trnG, the psbA-trnH intergenic spacer, and rpl16) of 10 Linum L. species (L. stelleroides, L. hirsutum, L. perenne, L. leonii, L. lewisii, L. narbonense, L. decumbens, L. grandiflorum, L. bienne (syn. L. angustifolium), and L. usitatissimum) using high-throughput sequencing data. The phylogenetic analysis showed that L. stelleroides forms a basal branch in the blue-flowered flax clade. Previously found inconsistencies in the position of L. stelleroides and some other species in the Linaceae phylogenetic tree resulted from the erroneous species identification of some of the studied plant samples.

14.
Plants (Basel) ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616223

RESUMO

Flax is grown worldwide for seed and fiber production. Linseed varieties differ in their oil composition and are used in pharmaceutical, food, feed, and industrial production. The field of application primarily depends on the content of linolenic (LIN) and linoleic (LIO) fatty acids. Inactivating mutations in the FAD3A and FAD3B genes lead to a decrease in the LIN content and an increase in the LIO content. For the identification of the three most common low-LIN mutations in flax varieties (G-to-A in exon 1 of FAD3A substituting tryptophan with a stop codon, C-to-T in exon 5 of FAD3A leading to arginine to a stop codon substitution, and C-to-T in exon 2 of FAD3B resulting in histidine to tyrosine substitution), three approaches were proposed: (1) targeted deep sequencing, (2) high resolution melting (HRM) analysis, (3) cleaved amplified polymorphic sequences (CAPS) markers. They were tested on more than a thousand flax samples of various types and showed promising results. The proposed approaches can be used in marker-assisted selection to choose parent pairs for crosses, separate heterogeneous varieties into biotypes, and select genotypes with desired homozygous alleles of the FAD3A and FAD3B genes at the early stages of breeding for the effective development of varieties with a particular LIN and LIO content, as well as in basic studies of the molecular mechanisms of fatty acid synthesis in flax seeds to select genotypes adequate to the tasks.

15.
Plants (Basel) ; 10(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34961087

RESUMO

As a result of the breeding process, there are two main types of flax (Linum usitatissimum L.) plants. Linseed is used for obtaining seeds, while fiber flax is used for fiber production. We aimed to identify the genes associated with the flax plant type, which could be important for the formation of agronomically valuable traits. A search for polymorphisms was performed in genes involved in the biosynthesis of cell wall components, lignans, fatty acids, and ion transport based on genome sequencing data for 191 flax varieties. For 143 of the 424 studied genes (4CL, C3'H, C4H, CAD, CCR, CCoAOMT, COMT, F5H, HCT, PAL, CTL, BGAL, ABC, HMA, DIR, PLR, UGT, TUB, CESA, RGL, FAD, SAD, and ACT families), one or more polymorphisms had a strong correlation with the flax type. Based on the transcriptome sequencing data, we evaluated the expression levels for each flax type-associated gene in a wide range of tissues and suggested genes that are important for the formation of linseed or fiber flax traits. Such genes were probably subjected to the selection press and can determine not only the traits of seeds and stems but also the characteristics of the root system or resistance to stresses at a particular stage of development, which indirectly affects the ability of flax plants to produce seeds or fiber.

16.
Front Plant Sci ; 12: 625416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567016

RESUMO

The genus Populus is presented by dioecious species, and it became a promising object to study the genetics of sex in plants. In this work, genomes of male and female Populus × sibirica individuals were sequenced for the first time. To achieve high-quality genome assemblies, we used Oxford Nanopore Technologies and Illumina platforms. A protocol for the isolation of long and pure DNA from young poplar leaves was developed, which enabled us to obtain 31 Gb (N50 = 21 kb) for the male poplar and 23 Gb (N50 = 24 kb) for the female one using the MinION sequencer. Genome assembly was performed with different tools, and Canu provided the most complete and accurate assemblies with a length of 818 Mb (N50 = 1.5 Mb) for the male poplar and 816 Mb (N50 = 0.5 Mb) for the female one. After polishing with Racon and Medaka (Nanopore reads) and then with POLCA (Illumina reads), assembly completeness was 98.45% (87.48% duplicated) for the male and 98.20% (76.77% duplicated) for the female according to BUSCO (benchmarking universal single-copy orthologs). A high proportion of duplicated BUSCO and the increased genome size (about 300 Mb above the expected) pointed at the separation of haplotypes in a large part of male and female genomes of P. × sibirica. Due to this, we were able to identify two haplotypes of the sex-determining region (SDR) in both assemblies; and one of these four SDR haplotypes, in the male genome, contained partial repeats of the ARR17 gene (Y haplotype), while the rest three did not (X haplotypes). The analysis of the male P. × sibirica SDR suggested that the Y haplotype originated from P. nigra, while the X haplotype is close to P. trichocarpa and P. balsamifera species. Moreover, we revealed a Populus-specific repeat that could be involved in translocation of the ARR17 gene or its part to the SDR of P. × sibirica and other Populus species. The obtained results expand our knowledge on SDR features in the genus Populus and poplar phylogeny.

17.
Front Genet ; 12: 676935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456967

RESUMO

Transcriptome sequencing of leaves, catkin axes, and flowers from male and female trees of Populus × sibirica and genome sequencing of the same plants were performed for the first time. The availability of both genome and transcriptome sequencing data enabled the identification of allele-specific expression. Such an analysis was performed for genes from the sex-determining region (SDR). P. × sibirica is an intersectional hybrid between species from sections Aigeiros (Populus nigra) and Tacamahaca (Populus laurifolia, Populus suaveolens, or Populus × moskoviensis); therefore, a significant number of heterozygous polymorphisms were identified in the SDR that allowed us to distinguish between alleles. In the SDR, both allelic variants of the TCP (T-complex protein 1 subunit gamma), CLC (Chloride channel protein CLC-c), and MET1 (DNA-methyltransferase 1) genes were expressed in females, while in males, two allelic variants were expressed for TCP and MET1 but only one allelic variant prevailed for CLC. Targeted sequencing of TCP, CLC, and MET1 regions on a representative set of trees confirmed the sex-associated allele-specific expression of the CLC gene in generative and vegetative tissues of P. × sibirica. Our study brings new knowledge on sex-associated differences in Populus species.

19.
Life (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205581

RESUMO

Currently, seven molecular subtypes of prostate cancer (PCa) are known, the most common of which being the subtype characterized by the presence of the TMPRSS2-ERG fusion transcript. While there is a considerable amount of work devoted to the influence of this transcript on the prognosis of the disease, data on its role in the progression and prognosis of PCa remain controversial. The present study is devoted to the analysis of the association between the TMPRSS2-ERG transcript and the biochemical recurrence of PCa. The study included two cohorts: the RNA-Seq sample of Russian patients with PCa (n = 72) and the TCGA-PRAD data (n = 203). The results of the analysis of the association between the TMPRSS2-ERG transcript and biochemical recurrence were contradictory. The differential expression analysis (biochemical recurrence cases versus biochemical recurrence-free) and the gene set enrichment analysis revealed a list of genes involved in major cellular pathways. The GNL3, QSOX2, SSPO, and SYS1 genes were selected as predictors of the potential prognostic model (AUC = 1.000 for a cohort of Russian patients with PCa and AUC = 0.779 for a TCGA-PRAD cohort).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA