RESUMO
The immunosuppressive tumor microenvironment constitutes a significant hurdle to immune checkpoint inhibitor responses. Both soluble factors and specialized immune cells, such as regulatory T cells (Treg), are key components of active intratumoral immunosuppression. Inducible costimulatory receptor (ICOS) can be highly expressed in the tumor microenvironment, especially on immunosuppressive Treg, suggesting that it represents a relevant target for preferential depletion of these cells. Here, we performed immune profiling of samples from tumor-bearing mice and patients with cancer to demonstrate differential expression of ICOS in immune T-cell subsets in different tissues. ICOS expression was higher on intratumoral Treg than on effector CD8 T cells. In addition, by immunizing an Icos knockout transgenic mouse line expressing antibodies with human variable domains, we selected a fully human IgG1 antibody called KY1044 that bound ICOS from different species. We showed that KY1044 induced sustained depletion of ICOShigh T cells but was also associated with increased secretion of proinflammatory cytokines from ICOSlow effector T cells (Teff). In syngeneic mouse tumor models, KY1044 depleted ICOShigh Treg and increased the intratumoral TEff:Treg ratio, resulting in increased secretion of IFNγ and TNFα by TEff cells. KY1044 demonstrated monotherapy antitumor efficacy and improved anti-PD-L1 efficacy. In summary, we demonstrated that using KY1044, one can exploit the differential expression of ICOS on T-cell subtypes to improve the intratumoral immune contexture and restore an antitumor immune response.
Assuntos
Anticorpos Monoclonais/farmacologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Tolerância Imunológica/efeitos dos fármacos , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BLRESUMO
By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.
Assuntos
Infecções por Enterobacteriaceae/imunologia , Variação Genética/genética , Ensaios de Triagem em Larga Escala/métodos , Imunofenotipagem/métodos , Infecções por Salmonella/imunologia , Animais , Citrobacter/imunologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Salmonella/imunologia , Infecções por Salmonella/microbiologiaAssuntos
Hipertensão , Anti-Hipertensivos , Pressão Sanguínea , Denervação , Rim , Estudos Prospectivos , SimpatectomiaRESUMO
The transparent conductive oxide layers are of great interest in recent researches because of their tunable properties which avail them to be used in varieties of applications. The important and most widely used TCO materials such as ITO and AZO films were prepared with three different layer thicknesses using DC sputtering system. The structural, optical and electrical characteristics of both ITO and AZO samples were analyzed and compared to reveal thickness dependent tunable properties of TCO materials. The maximum transmittance of 99.5% was obtained for AZO films at 600-700 nm wavelength range. The resistivity of ITO films was 200 times lesser than that of AZO films. The internal and external quantum efficiencies of ITO devices increased with increasing layer thickness whereas this situation was just opposite in case of AZO devices. The optical and electrical properties of ITO samples were found easily adjustable by changing layer thickness as compared to AZO samples. This study explores the strong association between the layer thickness and the properties of TCO films. This would be useful to extend the applications boundary of TCO materials.
RESUMO
Large-scale systemic mouse phenotyping, as performed by mouse clinics for more than a decade, requires thousands of mice from a multitude of different mutant lines to be bred, individually tracked and subjected to phenotyping procedures according to a standardised schedule. All these efforts are typically organised in overlapping projects, running in parallel. In terms of logistics, data capture, data analysis, result visualisation and reporting, new challenges have emerged from such projects. These challenges could hardly be met with traditional methods such as pen & paper colony management, spreadsheet-based data management and manual data analysis. Hence, different Laboratory Information Management Systems (LIMS) have been developed in mouse clinics to facilitate or even enable mouse and data management in the described order of magnitude. This review shows that general principles of LIMS can be empirically deduced from LIMS used by different mouse clinics, although these have evolved differently. Supported by LIMS descriptions and lessons learned from seven mouse clinics, this review also shows that the unique LIMS environment in a particular facility strongly influences strategic LIMS decisions and LIMS development. As a major conclusion, this review states that there is no universal LIMS for the mouse research domain that fits all requirements. Still, empirically deduced general LIMS principles can serve as a master decision support template, which is provided as a hands-on tool for mouse research facilities looking for a LIMS.
Assuntos
Pesquisa Biomédica , Sistemas de Informação em Laboratório Clínico , Software , Animais , CamundongosRESUMO
The Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were developed to address the lack of reproducibility in biomedical animal studies and improve the communication of research findings. While intended to guide the preparation of peer-reviewed manuscripts, the principles of transparent reporting are also fundamental for in vivo databases. Here, we describe the benefits and challenges of applying the guidelines for the International Mouse Phenotyping Consortium (IMPC), whose goal is to produce and phenotype 20,000 knockout mouse strains in a reproducible manner across ten research centres. In addition to ensuring the transparency and reproducibility of the IMPC, the solutions to the challenges of applying the ARRIVE guidelines in the context of IMPC will provide a resource to help guide similar initiatives in the future.
Assuntos
Experimentação Animal/normas , Bases de Dados como Assunto , Guias como Assunto , Fenótipo , Animais , CamundongosRESUMO
Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell.
RESUMO
Could nanostructures act as lenses to focus incident light for efficient utilization of photovoltaics? Is it possible, in order to avoid serious recombination loss, to realize periodic nanostructures in solar cells without direct etching in a light absorbing semiconductor? Here we propose and demonstrate a promising architecture to shape nanolenses on a planar semiconductor. Optically transparent and electrically conductive nanolenses simultaneously provide the optical benefit of modulating the incident light and the electrical advantage of supporting carrier transportation. A transparent indium-tin-oxide (ITO) nanolens was designed to focus the incident light-spectrum in focal lengths overlapping to a strong electric field region for high carrier collection efficiency. The ITO nanolens effectively broadens near-zero reflection and provides high tolerance to the incident light angles. We present a record high light-conversion efficiency of 16.0% for a periodic nanostructured Si solar cell.
RESUMO
The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated 'data wranglers' work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases.
Assuntos
Bases de Dados Genéticas , Camundongos Knockout , Fenótipo , Animais , Ontologias Biológicas , Internet , CamundongosRESUMO
Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PAPERCLIP:
Assuntos
Técnicas Genéticas , Camundongos Knockout , Fenótipo , Animais , Doença/genética , Modelos Animais de Doenças , Feminino , Genes Essenciais , Estudo de Associação Genômica Ampla , Masculino , CamundongosRESUMO
Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80% of the mutant lines. In addition, 57% of the lines were viable, 13% subviable, 30% embryonic lethal, and 7% displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model.
Assuntos
Genoma , Camundongos/genética , Animais , Europa (Continente) , Células Germinativas , Mutação , FenótipoRESUMO
The International Mouse Phenotyping Consortium (IMPC) (http://www.mousephenotype.org) will reveal the pleiotropic functions of every gene in the mouse genome and uncover the wider role of genetic loci within diverse biological systems. Comprehensive informatics solutions are vital to ensuring that this vast array of data is captured in a standardised manner and made accessible to the scientific community for interrogation and analysis. Here we review the existing EuroPhenome and WTSI phenotype informatics systems and the IKMC portal, and present plans for extending these systems and lessons learned to the development of a robust IMPC informatics infrastructure.
Assuntos
Camundongos/genética , Fenótipo , Animais , InternacionalidadeRESUMO
A significant challenge of in-vivo studies is the identification of phenotypes with a method that is robust and reliable. The challenge arises from practical issues that lead to experimental designs which are not ideal. Breeding issues, particularly in the presence of fertility or fecundity problems, frequently lead to data being collected in multiple batches. This problem is acute in high throughput phenotyping programs. In addition, in a high throughput environment operational issues lead to controls not being measured on the same day as knockouts. We highlight how application of traditional methods, such as a Student's t-Test or a 2-way ANOVA, in these situations give flawed results and should not be used. We explore the use of mixed models using worked examples from Sanger Mouse Genome Project focusing on Dual-Energy X-Ray Absorptiometry data for the analysis of mouse knockout data and compare to a reference range approach. We show that mixed model analysis is more sensitive and less prone to artefacts allowing the discovery of subtle quantitative phenotypes essential for correlating a gene's function to human disease. We demonstrate how a mixed model approach has the additional advantage of being able to include covariates, such as body weight, to separate effect of genotype from these covariates. This is a particular issue in knockout studies, where body weight is a common phenotype and will enhance the precision of assigning phenotypes and the subsequent selection of lines for secondary phenotyping. The use of mixed models with in-vivo studies has value not only in improving the quality and sensitivity of the data analysis but also ethically as a method suitable for small batches which reduces the breeding burden of a colony. This will reduce the use of animals, increase throughput, and decrease cost whilst improving the quality and depth of knowledge gained.
Assuntos
Biologia Computacional/métodos , Técnicas de Inativação de Genes , Fenótipo , Animais , Mineração de Dados , Feminino , Humanos , Modelos Lineares , Masculino , Camundongos , Valores de ReferênciaRESUMO
No permanent, reliable artificial tendon exists clinically. Our group developed the OrthoCoupler™ device as a versatile connector, fixed at one end to a muscle, and adaptable at the other end to inert implants such as prosthetic bones or to bone anchors. The objective of this study was to evaluate four configurations of the device to replace the extensor mechanism of the knee in goats. Within muscle, the four groups had: (A) needle-drawn uncoated bundles, (B) needle-drawn coated bundles, (C) barbed uncoated bundles, and (D) barbed coated bundles. The quadriceps tendon, patella, and patellar tendon were removed from the right hind limb in 24 goats. The four groups (n = 6 for each) were randomly assigned to connect the quadriceps muscle to the tibia (with a bone plate). Specimens were collected from each operated leg and contralateral unoperated controls both for mechanical testing and histology at 90 days post-surgery. In strength testing, maximum forces in the operated leg (vs. unoperated control) were 1,288 ± 123 N (vs. 1,387 ± 118 N) for group A, 1,323 ± 144 N (vs. 1,396 ± 779 N) for group B, 930 ± 125 N (vs. 1,337 ± 126 N) for group C, and 968 ± 109 N (vs. 1,528 ± 146 N) for group D (mean ± SEM). The strengths of the OrthoCoupler™ legs in the needled device groups were equivalent to unoperated controls (p = 0.6), while both barbed device groups had maximum forces significantly lower than their controls (p = 0.001). We believe this technology will yield improved procedures for clinical challenges in orthopaedic oncology, revision arthroplasty, tendon transfer, and tendon injury reconstruction.
Assuntos
Órgãos Artificiais , Salvamento de Membro/métodos , Desenho de Prótese , Músculo Quadríceps/cirurgia , Tendões , Tíbia/cirurgia , Animais , Fenômenos Biomecânicos/fisiologia , Materiais Revestidos Biocompatíveis , Análise de Falha de Equipamento , Cabras , Salvamento de Membro/instrumentação , Masculino , Modelos Animais , Atividade Motora/fisiologia , Procedimentos Ortopédicos/instrumentação , Procedimentos Ortopédicos/métodos , Osseointegração , Músculo Quadríceps/fisiologia , Estresse Mecânico , Tíbia/fisiologiaRESUMO
Wounds often cannot be successfully closed by conventional means of closure such as sutures or staples. Our group developed the FiberSecure™ device to close soft tissue wounds reliably, surpassing native tissue strength. We closed cross-fiber muscle incisions, to evaluate (1) four different configurations of FiberSecure™ for 30 days, then (2) the resulting preferred configuration for 180 days. The four treatment groups each placed 21,504 polyester (PET) 12-µm fibers (cross-sectional area 1% of muscle) traversing the incision, in the form of (A) Four large (No.7 suture) non-textured bundles, (B) Eight small (No.2 suture) non-textured, (C) Four large textured, or (D) Eight small textured. Four incisions were closed in the external oblique muscle of 16 Sinclair minipigs. At 30 days, specimens were removed for biomechanics, histology, and total collagen content. Group (B) was selected for 180-day evaluations in the same wound model in eight animals, four closures each (n = 32), again with biomechanics and histology. In strength testing, every specimen tore through muscle remotely, while the repair region remained intact. Maximum forces were (A) 37.8 ± 3.9 N, (B) 37.1 ± 4.7 N, (C) 39.0 ± 5.3 N, and (D) 32.4 ± 3.4 N at 30 days, and 37.2 ± 11.3 N at 180 days (mean ± SEM). No significant difference was observed among the groups or time points (p > 0.05).
Assuntos
Bandagens , Teste de Materiais/métodos , Músculo Esquelético/lesões , Ferimentos Penetrantes/terapia , Animais , Feminino , Músculo Esquelético/patologia , Suínos , Porco Miniatura , Fatores de Tempo , Ferimentos Penetrantes/patologiaRESUMO
The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies.
Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Proteínas , Animais , Biologia Computacional/tendências , Armazenamento e Recuperação da Informação/métodos , Internet , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Fenótipo , Linguagens de Programação , Estrutura Terciária de Proteína , SoftwareRESUMO
A coupling mechanism that can permanently fix a forcefully contracting muscle to a bone anchor or any totally inert prosthesis would meet a serious need in orthopaedics. Our group developed the OrthoCoupler device to satisfy these demands. The objective of this study was to test OrthoCoupler's performance in vitro and in vivo in the goat semitendinosus tendon model. For in vitro evaluation, 40 samples were fatigue-tested, cycling at 10 load levels, n = 4 each. For in vivo evaluation, the semitendinosus tendon was removed bilaterally in eight goats. Left sides were reattached with an OrthoCoupler, and right sides were reattached using the Krackow stitch with #5 braided polyester sutures. Specimens were harvested 60 days postsurgery and assigned for biomechanics and histology. Fatigue strength of the devices in vitro was several times the contractile force of the semitendinosus muscle. The in vivo devices were built equivalent to two of the in vitro devices, providing an additional safety factor. In strength testing at necropsy, suture controls pulled out at 120.5 +/- 68.3 N, whereas each OrthoCoupler was still holding after the muscle tore, remotely, at 298 +/- 111.3 N (mean +/- SD) (p < 0.0003). Muscle tear strength was reached with the fiber-muscle composite produced in healing still soundly intact. This technology may be of value for orthopaedic challenges in oncology, revision arthroplasty, tendon transfer, and sports-injury reconstruction.