Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 439: 138063, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035494

RESUMO

Plant-based meat alternatives are gaining popularity as protein sources. However, pan-frying may lead to the formation of potentially harmful food contaminants. We investigated the formation of acrylamide and furanoic compounds in four different plant-based meat alternatives and two meat burger patties during pan-frying at 160 and 200 °C. The highest acrylamide contents (72. ± 7.7 and 69.2 ± 9.5 µg/kg, respectively) were found in soy flour- and sunflower-protein based patties fried at 200 °C. Unprepared pea and soy protein-based burger patties contained the highest furfural amounts (2832.8 ± 576.2 and 2683.0 ± 868.5 µg/kg, respectively). Furfuryl alcohol content was highest in soy flour-based patties and increased temperature-dependently up to 1120.9 ± 383.4 µg/kg. Based on the tolerable intake calculated by the EFSA Scientific Panel on Contaminants in the Food Chain, these amounts do not pose a health risk. Nevertheless, since plant-based novel food are being increasingly consumed, further investigations into the formation of food contaminants in novel processed foods are warranted.


Assuntos
Culinária , Produtos da Carne , Acrilamida/análise , Temperatura Alta , Substitutos da Carne , Carne/análise
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37526942

RESUMO

Variations in the dietary Ca concentration may affect inositol phosphate (InsP) degradation, and thereby, P digestibility in pigs. This study assessed the effects of dietary Ca concentration and exogenous phytase on InsP degradation, nutrient digestion and retention, blood metabolites, and microbiota composition in growing pigs with ileal cannulation. In a completely randomized row-column design with four periods, eight ileal-cannulated barrows (initial body weight 27 kg) were fed four corn-soybean- and rapeseed meal-based diets containing 5.5 or 8.5 g Ca/kg dry matter (DM), with or without 1,500 FTU of an exogenous hybrid-6-phytase/kg diet. No mineral P was added and the P concentration in the feed was 4.8 g P/kg DM. Prececal InsP6 disappearance in pigs fed diets containing exogenous phytase was lower (P = 0.022) with additional Ca than without. Concentrations of InsP2-4 isomers and myo-inositol in the distal ileal digesta and prececal P digestibility were greater (P < 0.001) with exogenous phytase than without exogenous phytase. In feces, InsP6 disappearance was lower (P < 0.002) and concentration of InsP5 and InsP4 isomers was higher (P ≤ 0.031) with additional Ca compared to without additional Ca. The prececal amino acid digestibility, energy digestibility, and hindgut disappearance of energy did not differ. The Shannon diversity index of the microbiota in the distal ileal digesta and feces was similar among the diets but was lower in the distal ileal digesta than in the feces (P < 0.001). Permutation analysis of variance revealed no dietary differences between the bacterial groups within the ileal digesta and fecal samples (P > 0.05). In conclusion, additional Ca reduced the effect of exogenous phytase on prececal InsP6 degradation. Endogenous InsP degradation was impaired by additional Ca only in the hindgut but the abundance of bacterial genera in feces was not affected.


The dietary calcium concentration can influence the release of phosphorus from phytate in growing pigs. This study assessed the effects of dietary calcium and exogenous phytase on inositol phosphate (InsP) degradation and nutrient digestibility in ileal-cannulated, growing pigs. The phosphorus, calcium, and myo-inositol concentrations in the blood, microbiota composition in the ileal digesta and feces, and volatile fatty acid concentrations in the feces were also evaluated. Additional dietary calcium decreased prececal inositol hexakisphosphate (InsP6) disappearance, but only with exogenous phytase. Concentrations of InsP2-4 isomers and myo-inositol in the ileal digesta and prececal phosphorus digestibility were greater with exogenous phytase, but not affected by dietary calcium concentration. In contrast, fecal InsP6 disappearance was lower and the concentration of InsP4-5 isomers in feces was greater with additional dietary calcium. Regarding microbiota, the Shannon diversity index was lower in ileal digesta than in feces but was unaffected by dietary calcium concentration or exogenous phytase. In conclusion, dietary calcium concentration is relevant for phytate disappearance in feces, but not in the ileal digesta. However, when exogenous phytase is used, the dietary calcium concentration is important because prececal phytate degradation is changed.


Assuntos
6-Fitase , Microbioma Gastrointestinal , Fósforo na Dieta , Animais , 6-Fitase/metabolismo , Ração Animal/análise , Cálcio da Dieta/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Digestão , Fosfatos de Inositol , Minerais/metabolismo , Fósforo na Dieta/metabolismo , Ácido Fítico/metabolismo , Suínos
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769092

RESUMO

Wheat is of high importance for a healthy and sustainable diet for the growing world population, partly due to its high mineral content. However, several minerals are bound in a phytate complex in the grain and unavailable to humans. We performed a series of trials to compare the contents of minerals and phytic acid as well as phytase activity in several varieties from alternative wheat species spelt, emmer and einkorn with common wheat. Additionally, we investigated the potential of recent popular bread making recipes in German bakeries to reduce phytic acid content, and thus increase mineral bioavailability in bread. For all studied ingredients, we found considerable variance both between varieties within a species and across wheat species. For example, whole grain flours, particularly from emmer and einkorn, appear to have higher mineral content than common wheat, but also a higher phytic acid content with similar phytase activity. Bread making recipes had a greater effect on phytic acid content in the final bread than the choice of species for whole grain flour production. Recipes with long yeast proofing or sourdough and the use of whole grain rye flour in a mixed wheat bread minimized the phytic acid content in the bread. Consequently, optimizing food to better nourish a growing world requires close collaboration between research organizations and practical stakeholders ensuring a streamlined sustainable process from farm to fork.


Assuntos
6-Fitase , Ácido Fítico , Humanos , Ácido Fítico/metabolismo , Farinha , Pão , Triticum/metabolismo , 6-Fitase/metabolismo , Fermentação , Minerais/metabolismo
4.
Electrophoresis ; 41(12): 1045-1059, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32170873

RESUMO

Electrophoretic separations are of growing interest to tackle complex analytical challenges. Nevertheless, capillary electrophoresis, as the most common mode, still suffers from insufficient detection limits due to low capillary loadability. ITP is of growing interest as preconcentration method for capillary electrophoresis and is also interesting to be applied as an independent analytical method. While mass spectrometric detection is common for capillary electrophoresis, the combination of ITP with MS is still a niche technique. In this work, we want to give an overview on isotachophoretic effects in CE-MS and ITP-MS methods, as well as coupling techniques of ITP with CE-MS. The challenges and possibilities associated with mass spectrometric detection in ITP and its coupling to capillary electrophoresis are critically discussed.


Assuntos
Isotacoforese , Espectrometria de Massas , Eletroforese Capilar
5.
Anal Bioanal Chem ; 410(3): 725-746, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098335

RESUMO

Since its introduction in 1974, the herbicide glyphosate has experienced a tremendous increase in use, with about one million tons used annually today. This review focuses on sensors and electromigration separation techniques as alternatives to chromatographic methods for the analysis of glyphosate and its metabolite aminomethyl phosphonic acid. Even with the large number of studies published, glyphosate analysis remains challenging. With its polar and depending on pH even ionic functional groups lacking a chromophore, it is difficult to analyze with chromatographic techniques. Its analysis is mostly achieved after derivatization. Its purification from food and environmental samples inevitably results incoextraction of ionic matrix components, with a further impact on analysis derivatization. Its purification from food and environmental samples inevitably results in coextraction of ionic matrix components, with a further impact on analysis and also derivatization reactions. Its ability to form chelates with metal cations is another obstacle for precise quantification. Lastly, the low limits of detection required by legislation have to be met. These challenges preclude glyphosate from being analyzed together with many other pesticides in common multiresidue (chromatographic) methods. For better monitoring of glyphosate in environmental and food samples, further fast and robust methods are required. In this review, analytical methods are summarized and discussed from the perspective of biosensors and various formats of electromigration separation techniques, including modes such as capillary electrophoresis and micellar electrokinetic chromatography, combined with various detection techniques. These methods are critically discussed with regard to matrix tolerance, limits of detection reached, and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA