RESUMO
PURPOSE: Bone resorption inhibitors, such as bisphosphonates (BP) and denosumab, are frequently used for the management of osteoporosis. Although both drugs reduce the risk of osteoporotic fractures, they are associated with a serious side effect known as medication-related osteonecrosis of the jaw (MRONJ). Sclerostin antibodies (romosozumab) increase bone formation and decrease the risk of osteoporotic fractures: however, their anti-resorptive effect increases ONJ. Thus, this study aimed to elucidate the role of sclerostin deletion in the development of MRONJ. METHODS: Sclerostin knockout (SostΔ26/Δ26) mice were used to confirm the development of ONJ by performing tooth extractions. To confirm the role of sclerostin deficiency in a more ONJ-prone situation, we used the BP-induced ONJ model in combination with severe periodontitis to evaluate the development of ONJ and bone formation in wild-type (WT) and SostΔ26/Δ26 mice. Wound healing assay using gingival fibroblasts with or without sclerostin stimulation and tooth extraction socket healing were evaluated in the WT and SostΔ26/Δ26 mice. RESULTS: ONJ was not detected in the extraction socket of SostΔ26/Δ26 mice. Moreover, the incidence of ONJ was significantly lower in the SostΔ26/Δ26 mice treated with BP compared to that of the WT mice. Osteogenic proteins, osteocalcin, and runt-related transcription factor 2, were expressed in the bone surface in SostΔ26/Δ26 mice. Recombinant sclerostin inhibited gingival fibroblast migration. The wound healing rate of the extraction socket was faster in SostΔ26/Δ26 mice than in WT mice. CONCLUSION: Sclerostin deficiency did not cause ONJ and reduced the risk of developing BP-induced ONJ. Enhanced bone formation and wound healing were observed in the tooth extraction socket. The use of romosozumab (anti-sclerostin antibody) has proven to be safe for surgical procedures of the jaw.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Camundongos Knockout , Animais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/genética , Camundongos , Deleção de Genes , Marcadores Genéticos , Cicatrização/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Extração Dentária/efeitos adversos , Difosfonatos/farmacologia , Difosfonatos/efeitos adversos , Osteogênese/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genéticaRESUMO
Drug-induced gingival enlargement (DIGE) is a side effect of ciclosporin, calcium channel blockers, and phenytoin. DIGE is a serious disease that leads to masticatory and esthetic disorders, severe caries, and periodontitis but currently has no standard treatment. We recently reported that nuclear receptor 4A1 (NR4A1) is a potential therapeutic target for DIGE. This study aimed to evaluate the therapeutic effects of n-butylidenephthalide (BP), which increases the expression of NR4A1, on DIGE. In this study, NR4A1 mRNA expression was analyzed in the patients with periodontal disease (PD) and DIGE. We evaluated the effect of BP on NR4A1 expression in gingival fibroblasts and in a DIGE mouse model. RNA sequencing (RNA-seq) was conducted to identify the mechanisms by which BP increases NR4A1 expression. The results showed that NR4A1 mRNA expression in the patients with DIGE was significantly lower than the patients with PD. BP suppressed the upregulation of COL1A1 expression, which was upregulated by TGF-ß. BP also ameliorated gingival overgrowth in DIGE mice and reduced Col1a1 and Pai1 expression. BP also decreased Il1ß mRNA expression in gingival tissue in DIGE. RNA-seq results showed an increase in the expression of several genes related to mitogen-activated protein kinase including DUSP genes in gingival fibroblasts stimulated by BP. Treatment with ERK and JNK inhibitors suppressed the BP-induced increase in NR4A1 expression. In addition, BP promoted the phosphorylation of ERK in gingival fibroblasts. In conclusion, BP increases NR4A1 expression in gingival fibroblasts through ERK and JNK signaling, demonstrating its potential as a preventive and therapeutic agent against DIGE.
RESUMO
The mechanical property, microhardness, is evaluated in dental enamel, dentin, and bone in oral disease models, including dental fluorosis and periodontitis. Micro-CT (µCT) provides 3D imaging information (volume and mineral density) and scanning electron microscopy (SEM) produces microstructure images (enamel prism and bone lacuna-canalicular). Complementarily to structural analysis by µCT and SEM, microhardness is one of the informative parameters to evaluate how structural changes alter mechanical properties. Despite being a useful parameter, studies on microhardness of alveolar bone in oral diseases are limited. To date, divergent microhardness measurement methods have been reported. Since microhardness values vary depending on the sample preparation (polishing and flat surface) and indentation sites, diverse protocols can cause discrepancies among studies. Standardization of the microhardness protocol is essential for consistent and accurate evaluation in oral disease models. In the present study, we demonstrate a standardized protocol for microhardness analysis in tooth and alveolar bone. Specimens used are as follows: for the dental fluorosis model, incisors were collected from mice treated with/without fluoride-containing water for 6 weeks; for ligature-induced periodontal bone resorption (L-PBR) model, alveolar bones with periodontal bone resorption were collected from mice ligated on the maxillary 2nd molar. At 2 weeks after the ligation, the maxilla was collected. Vickers hardness was analyzed in these specimens according to the standardized protocol. The protocol provides detailed materials and methods for resin embedding, serial polishing, and indentation sites for incisors and alveolar. To the best of our knowledge, this is the first standardized microhardness protocol to evaluate the mechanical properties of tooth and alveolar bone in rodent oral disease models.
Assuntos
Processo Alveolar , Modelos Animais de Doenças , Microtomografia por Raio-X , Animais , Camundongos , Processo Alveolar/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Fluorose Dentária/diagnóstico por imagem , Fluorose Dentária/patologia , Dureza , Incisivo/diagnóstico por imagem , Dente/diagnóstico por imagemRESUMO
Calcinosis is frequently observed in patients with systemic sclerosis (SSc). The fundamental treatment of calcinosis has not yet been established. During follow-up, calcinosis in the subcutaneous surface is often spontaneously extracted or remains confined by fibrous tissues. We previously identified a new symptom in SSc patients, multiple external root resorption (MERR), and these patients had calcifications in the nasal spine. Here, we report for the first time that calcinosis at the nasal spine in patients with MERR can be replaced by cancellous bone-like tissue. Patients 1 and 2 were a 62-year-old Japanese female and a 45-year-old Japanese female (respectively) with MERR who had been previously treated for SSc (Patient 1: limited type, positive for anti-centromere antibody; Patient 2: diffuse type, positive for anti-Scl70 and anti-SS-A antibodies). Patient 3 was a 57-year-old female with MERR who had been previously treated for SSc (diffuse type, positive anti-Scl-70 antibody) and underwent denosumab injection for osteoporosis. Cone-beam computed tomography (CBCT) and CT images in the calcifications at the nasal spine in Patient 1 and 2 were replaced with cancellous bone-like tissue, but not in Patient 3. Serum laboratory examination was performed to assess the systemic bone disease. All three patients had normal clinical data within the references, apart from slightly higher 1,25-dihydroxyvitamin D levels in Patient 1. SSc patients with calcinosis in the maxillofacial area need to be examined carefully for bone replacement using CBCT or CT.
RESUMO
Drug-induced gingival overgrowth (DIGO) is a side effect of cyclosporine A (CsA), nifedipine (NIF), and phenytoin (PHT). Nuclear receptor 4A1 (NR4A1) plays a role in fibrosis in multiple organs. However, the relationship between NR4A1 and DIGO remains unclear. We herein investigated the involvement of NR4A1 in DIGO. In the DIGO mouse model, CsA inhibited the up-regulation of Nr4a1 expression induced by periodontal disease (PD) in gingival tissue, but not that of Col1a1 and Pai1. We detected gingival overgrowth (GO) in Nr4a1 knock out (KO) mice with PD. A NR4A1 agonist inhibited the development of GO in DIGO model mice. TGF-ß increased Col1a1 and Pai1 expression levels in KO mouse gingival fibroblasts (mGF) than in wild-type mice, while the overexpression of NR4A1 in KO mGF suppressed the levels. NR4A1 expression levels in gingival tissue were significantly lower in DIGO patients than in PD patients. We also investigated the relationship between nuclear factor of activated T cells (NFAT) and NR4A1. NFATc3 siRNA suppressed the TGF-ß-induced up-regulation of NR4A1 mRNA expression in human gingival fibroblasts (hGF). CsA suppressed the TGF-ß-induced translocation of NFATc3 into the nuclei of hGF. Furthermore, NIF and PHT also decreased NR4A1 mRNA expression levels and suppressed the translocation of NFATc3 in hGF. We confirmed that CsA, NIF, and PHT reduced cytosolic calcium levels increased by TGF-ß, while CaCl2 enhanced the TGF-ß-up-regulated NR4A1 expression. We propose that the suppression of the calcium-NFATc3-NR4A1 cascade by these three drugs plays a role in the development of DIGO.
Assuntos
Cálcio/metabolismo , Ciclosporina/toxicidade , Gengiva/patologia , Imunossupressores/toxicidade , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
Background: Periodontal disease (PD) is a risk factor for systemic diseases, including neurodegenerative diseases. The role of the local and systemic inflammation induced by PD in neuroinflammation currently remains unclear. The present study investigated the involvement of periodontal inflammation in neuroinflammation and blood-brain barrier (BBB) disruption. Methods: To induce PD in mice (c57/BL6), a ligature was placed around the second maxillary molar. Periodontal, systemic, and neuroinflammation were assessed based on the inflammatory cytokine mRNA or protein levels using qPCR and ELISA. The BBB permeability was evaluated by the mRNA levels and protein levels of tight junction-related proteins in the hippocampus using qPCR and immunofluorescence. Dextran tracing in the hippocampus was also conducted to examine the role of periodontal inflammation in BBB disruption. Results: The TNF-α, IL-1ß, and IL-6 levels markedly increased in gingival tissue 1 week after ligation. The IL-6 serum levels were also increased by ligature-induced PD. In the hippocampus, the IL-1ß mRNA expression levels were significantly increased by ligature-induced PD through serum IL-6. The ligature-induced PD decreased the claudin 5 expression levels in the hippocampus, and the neutralization of IL-6 restored its levels. The extravascular 3-kDa dextran levels were increased by ligature-induced PD. Conclusions: These results suggest that the periodontal inflammation-induced expression of IL-6 is related to neuroinflammation and BBB disruption in the hippocampus, ultimately leading to cognitive impairment. Periodontal therapy may protect against neurodegenerative diseases.
RESUMO
BACKGROUND: Multiple external root resorption (MERR) has been reported in systemic sclerosis (SSc) patients in Japan and Spain. To establish whether MERR is a new manifestation, we investigated the prevalence of MERR and systemic and oral manifestations to be associated with MERR in patients with SSc. METHODS: Root resorption was detected by dental X-rays, panoramagraphy or cone beam computed tomography (CBCT). The prevalence of systemic and oral manifestations was examined by rheumatologists and dentists, respectively. Autoantibodies were investigated using laboratory tests. RESULTS: MERR was detected in four out of the 41 patients (9.8%) who participated in the present study. The prevalence of digital ulcers was significantly higher in patients with MERR (MERR vs non-MERR, 75% vs 16.2%, p < 0.05), whereas that of other systemic manifestations was not. The prevalence of face skin sclerosis (100% vs 10.8%, p < 0.01), calcinosis at the facial region (75% vs 0%, p < 0.01), limited mouth opening (75% vs 18.9% p < 0.05), temporomandibular disorder symptoms (50% vs 2.7%, p < 0.05), and tongue rigidity (75% vs 2.7%, p < 0.05) was significantly higher in patients with MERR. CONCLUSION: SSc patients with MERR had highly homogenous maxillofacial manifestations. Further clinical and basic studies are needed to elucidate the mechanisms underlying MERR in SSc patients.